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Project 2B: Compression of 2D images using Haar wavelets

The purpose of this project is to investigate properties and applications of Haar wavelets.
In particular, methods for compressing images are investigated.

(Part 1) (40 points) Matrices can be compressed using the Haar transform as folllows.
Given a 2m× 2n matrix A, we can first convert the rows of A to their Haar coefficients using
the Haar transform W−1

n (where Wm is the 2m×2m matrix whose columns are the vectors in
the Haar basis of dimension 2m), obtaining a matrix B, and then convert the columns of B
to their Haar coefficients, using the matrix W−1

m . Because columns and rows are exchanged
in the first step,

B = A(W−1
n )>,

and in the second step C = W−1
m B, thus, we have

C = W−1
m A(W−1

n )>.

In the other direction, given a 2m × 2n matrix C of Haar coefficients, we reconstruct the
matrix A (the image) by first applying Wm to the columns of C, obtaining B, and then W>

n

to the rows of B. Therefore
A = WmCW>

n .

Of course, we don’t actually have to invert Wm and Wn and perform matrix multiplications.
We just have to use our algorithms using averaging and differencing.

Write two Matlab functions haar2D and haar inv2D implementing the method for com-
puting the Haar transform of a matrix and the reconstruction of an image from its matrix of
Haar coefficients, as described above. These will be tested using the auto-grader using the
output script.

In the report, apply the function haar inv2D to the matrix

T =



1212 −306 −146 −54 −24 −68 −40 4
30 36 −90 −2 8 −20 8 −4
−50 −10 −20 −24 0 72 −16 −16
82 38 −24 68 48 −64 32 8
8 8 −32 16 −48 −48 −16 16
20 20 −56 −16 −16 32 −16 −16
−8 8 −48 0 −16 −16 −16 −16
44 36 0 8 80 −16 −16 0


.
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Compare your result with the matrix Pbad of Example 4.1 of the paper by Greg Ames (see
the web page for CIS515) shown below:

Pbad =



576 704 1152 1280 1344 1472 1536 1536
704 640 1156 1088 1344 1408 1536 1600
768 832 1216 1472 1472 1536 1600 1600
832 832 960 1344 1536 1536 1600 1536
832 832 960 1216 1536 1600 1536 1536
960 896 896 1088 1600 1600 1600 1536
768 768 832 832 1280 1472 1600 1600
448 768 704 640 1280 1408 1600 1600


The matrix in Ames’s paper seems to have at typo! What is it?

(Part 2) (20 points) You can load and display various images in Matlab using the
following lines of code:

clear X map

load(’durer’,’X’)

Xdurer = X(1:512,:);

Xdurer(:,510:512) = 50;

figure

colormap(gray)

imagesc(Xdurer)

The above loads the file durer. There are a few other images such as detail, flujet, earth,
mandrill, spine, and clown. You may have to resize these images to have dimensions that
are powers of 2. To display an image, use imagesc.

Convert Xdurer to its Haar transform and decode it. Compare the original and the
reconstructed image. Do the same with the other images detail, flujet, earth, mandrill,
spine, and clown. Show the transformed version of Xdurer (and the other images if you
so choose). Examples of Haar images from a different image example are in figures 1 and 2
(your color scheme may differ from the examples depending which colormap you choose to
use).

What happens if you set small (in absolute value) coefficients of the transformed image
to zero? Test at a few thresholds.

(Part 3) (40 points) Recall that W>
n is not the inverse of Wn, but rather the matrix

W−1
n = DnW

>
n

with Dn = diag
(

2−n, 2−n︸︷︷︸
20

, 2−(n−1), 2−(n−1)︸ ︷︷ ︸
21

, 2−(n−2), . . . , 2−(n−2)︸ ︷︷ ︸
22

, . . . , 2−1, . . . , 2−1︸ ︷︷ ︸
2n−1

)
.

The orthogonal matrix

Hn = WnD
1
2
n
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Figure 1: Example image and its haar transform (colored using colormap jet)

whose columns are the normalized Haar basis vectors, with

D
1
2
n = diag

(
2−

n
2 , 2−

n
2︸︷︷︸

20

, 2−
n−1
2 , 2−

n−1
2︸ ︷︷ ︸

21

, 2−
n−2
2 , . . . , 2−

n−2
2︸ ︷︷ ︸

22

, . . . , 2−
1
2 , . . . , 2−

1
2︸ ︷︷ ︸

2n−1

)
is called the normalized Haar transform matrix. Given a vector (signal) u, we call c = H>n u
the normalized Haar coefficients of u.

Because Hn is orthogonal, H−1n = H>n .

Then a moment of reflection shows that we have to slightly modify the algorithms to
compute H>n u and Hnc as follows: When computing the sequence of ujs, use

uj+1(2i− 1) = (uj(i) + uj(2j + i))/
√

2

uj+1(2i) = (uj(i)− uj(2j + i))/
√

2,

and when computing the sequence of cjs, use

cj(i) = (cj+1(2i− 1) + cj+1(2i))/
√

2

cj(2j + i) = (cj+1(2i− 1)− cj+1(2i))/
√

2.

Note that things are now more symmetric, at the expense of a division by
√

2. However, for
long vectors, it turns out that these algorithms are numerically more stable.

Write two Matlab functions haar2D n and haar inv2D n implementing the method for
computing the normalized Haar transform of a matrix and the reconstruction of an image
from its matrix of normalized Haar coefficients, as described above. These will be tested in
the auto-grader as usual.
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Figure 2: Example image from figure 1 and a representation of its normalized haar transform,
with a zoomed in the upper right corner (colored using colormap jet)

Consider the image given by the following matrix:

A =



100 103 99 97 93 94 78 73
102 97 100 111 113 104 96 82
99 109 104 95 93 92 88 76
114 104 99 102 93 82 74 74
96 91 91 87 79 78 77 76
90 88 83 78 77 74 76 76
92 81 73 72 69 65 66 62
75 70 69 65 60 55 61 65


In the report, use haar2D n to compute the normalized matrix C of Haar coefficients of

A.

It is claimed in Ames’s paper (Section 7) that the reconstructed matrix

A2 =



100 100 95 95 92 92 76 76
103 103 98 98 106 106 90 90
99 109 99 99 96 96 81 81
114 104 104 104 91 91 76 76
91 91 86 86 76 76 76 76
91 91 86 86 76 76 76 76
82 82 76 76 66 66 66 66
74 74 69 69 58 58 59 59


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is obtained from the normalized matrix

C1 =



255 52 15 21 0 0 0 0
78 0 0 22 0 0 0 0
0 0 0 0 0 0 0 0
38 0 0 0 0 0 0 0
0 11 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0


,

but this not quite correct. First, the coefficient 255 should be 682, and other nonzero entries
are missing. In your report, find the matrix C2, a compressed version of C that gives back
A2. The matrix C2 is obtained by applying the following steps:

1. Apply haar2D n to A, obtaining C0.

2. Apply the command round to C0 to obtain a matrix C1 with integer entries.

3. Set to zero all entries of absolute value strictly less than 10 in C1 to obtain C2.

Show the output of each of these steps in the report.
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