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Abstract. In this paper we investigate methods for solving the elastic net regression prob-
lem. The lasso regression problem is the special case of the elastic net regression problem
where only the `1-norm of the weight vector is penalized. The elastic net regression problem
has a unique minimal solution. This solution can be found directly from the primal program
using ADMM, using a simple extension of the method used to solve lasso. For all of these
problems we seek a minimal solution (w, b) where w is the weight vector and b is the intercept
(we deal with the intercept directly, rather than by “centering” of the data).

Using the trick where we replace the `1-norm ‖w‖1 of the weight vector w occurring
in the objective function by the sum 1>n ε of the components of a vector ε and adding the
inequalites w − ε ≤ 0 and −w − ε ≤ 0, which are equivalent to |wi| ≤ εi for i = 1, . . . , n,
we avoid having to use subgradients and we obtain an explicit form of the dual program in
terms of the Lagrange multipliers associated with the above inequalities. This dual program
can be solved using ADMM, and also yields the solution of the primal. This is because
the matrix occurring in the quadratic part of the objective function is symmetric positive
definite.

However, in the special case of lasso, this matrix is singular if the data matrix X does
not have full rank. In this case, it is not possible to find an explicit formula for the dual
function in terms of the Lagrange multipliers (associated with the inequalities w − ε ≤ 0
and −w − ε ≤ 0). We elucidate the relationship between the Lagrange multipliers and the
subgradients of the `1-norm function occurring as a penalty term in lasso. We investigate
the uniqueness of the solutions of lasso. We find sufficient conditions involving a notion
of affine independence weaker than the standard notion of affine independence. We also
characterize the space of minimal solutions. It is a polytope arising as the intersection of
various hyperplanes related to the kernel of the matrix [X 1m] with a simplex contained in
a special hyperplane.
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1 Solving the Problem Directly

The first formulation of elastic net regression consists in expressing the objective function
directly in terms of w, b and ‖w‖1 as

Program (elastic net V1):

minimize J(w, b) =
1

2
(Xw + b1m − y)>(Xw + b1m − y) +

1

2
Kw>w + τ ‖w‖1 ,

where K > 0 and τ > 0 are two constants controlling the influence of the `2-regularization
and the `1-regularization. Recall that X is an m × n matrix, w ∈ Rn, y ∈ Rm, and b ∈ R,
and that X and y are given. Observe that as in the case of ridge regression, minimization
is performed over w and b, but b is not penalized in the objective function. Lasso regression
can be viewed as the special case of elastic net regression in which K = 0 and τ > 0, and
ridge regression as the special case where K > 0 and τ = 0.

Another formulation of elastic net regression uses a trick to get rid of the term τ ‖w‖1,
as we explain in Section 19.4 of our book Gallier and Qaintance [6] (Vol II.)

Program (elastic net V2):

minimize
1

2
ξ>ξ +

1

2
Kw>w + τ1>n ε

subject to

y −Xw − b1m = ξ

w ≤ ε

− w ≤ ε,

In this formulation ξ ∈ Rm, ε ∈ Rn, and minimization is performed over ξ, w, ε and b,
but b is not penalized. The variant of Version (V2) in which ξ = y − Xw − b1m is not a
constraint but instead is incoporated into the objective function as in (V1) is convenient to
derive the dual program; see Section 2.

In this section we use ADMM to solve Version (V1) of elastic net regression.

It is easy to show (see Section 7) that by expanding the first term in Version (V1) we get

J(w, b) =
1

2

(
w> b

)(X>X +KIn X>1m
1>mX m

)(
w
b

)
−
(
w> b

)(X>y
1>my

)
+

1

2
y>y + τ ‖w‖1 .

Thus the elastic net regression problem is to minimize J(w, b) with respect to w and b,
without penalizing b. Since the term 1

2
y>y is constant, it is equivalent to minimize J(w, b)−

1
2
y>y, so we will drop the term 1

2
y>y from the objective function.

It can be shown that the matrix

B =

(
X>X +KIn X>1m

1>mX m

)
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is symmetric positive definite, and that as a consequence, J is strictly convex; see Section 7.
Since it is nonnegative, it has a unique minimum (see Gallier and Qaintance [6], Theorem
4.13(1,2)), a fact that is not obvious at first glance.

We derive a method for solving the above problem using ADMM directly on this version
of the primal. When K = 0 (and τ > 0) elastic net regression is actually lasso, and indeed
the method that we describe reduces to ADMM for lasso. However it should be noted that
in this case there may be more that one minimal solution because the matrix

B =

(
X>X X>1m
1>mX m

)
may no longer be positive definite. As we explain in Section 3, this will happen if the
m× (n+ 1) matrix

X̃ =
(
X 1m

)
does not have full rank, because (X̃)>X = B. The situation is actually quite subtle, see
Sections 3, 4 and 5.

As in Sections 16.3 and 16.8 of our book Gallier and Qaintance [6] (Vol II) we need
to figure out the x-minimization step and the z-minimization step of the scaled version of
ADMM. In our situation,

x =

(
w
b

)
,

A = In+1, B = −In+1, c = 0n+1, f(w, b) = J(w, b) − τ ‖z‖1, and g(z, zb) = τ ‖z‖1. Observe
that g is independent of zb, since we are not penalizing b. We introduce the variables(

wk

bk

)
,

(
z
zb

)
,

(
zk

zkb

)
,

(
µk

µkb

)
.

Note that the superscript k in wk, bk, zk, zkb , µ
k, µkb denotes the iteration stage, and not the

kth power. Since A = In+1, B = −In+1, c = 0n+1, we have the unique equation(
w
b

)
−
(
z
zb

)
=

(
0n
0

)
.

We start with some initial values (z0, z0b , µ
0, µ0

b) and find (wk+1, bk+1, zk+1, zk+1
b , µk+1,

µk+1
b ) for all k ≥ 0 using the following x-minimization steps and z-minimization steps in

alternation.

The x-minimization step is to minimize

1

2

(
w> b

)(X>X +KIn X>1m
1>mX m

)(
w
b

)
−
(
w> b

)(X>y
1>my

)
+
ρ

2

∥∥∥∥(wb
)
−
(
zk − µk
zkb − µkb

)∥∥∥∥2
2
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with respect to w and b. We immediately find that the gradient is given by

∇Jw,b =

((
X>X +KIn X>1m

1>mX m

)
+ ρIn+1

)(
w
b

)
−
(
X>y
1>my

)
− ρ

(
zk − µk
zkb − µkb

)
.

Since the x-update is obtained by setting the above gradient to zero, we find that the x-
update is given by(

wk+1

bk+1

)
=

((
X>X +KIn X>1m

1>mX m

)
+ ρIn+1

)−1((
X>y
1>my

)
+ ρ

(
zk − µk
zkb − µkb

))
.

The z-minimization step is to minimize

τ ‖z‖1 +
ρ

2

∥∥∥∥(wk+1

bk+1

)
−
(
z − µk
zb − µkb

)∥∥∥∥2
2

= τ ‖z‖1 +
ρ

2

∥∥∥∥(wk+1 + µk

bk+1 + µkb

)
−
(
z
zb

)∥∥∥∥2
2

with respect to z and zb. Since ‖z‖1 does not depend on zb, as in the case of lasso in terms
of z, we see that the z-update is

zk+1 = Sτ/ρ(w
k+1 + µk)

zk+1
b = bk+1 + µkb ,

where the function Sc given by

Sc(v) =


v − c if v > c

0 if |v| ≤ c

v + c if v < −c

is the soft thresholding operator; see Gallier and Qaintance [6] (Section 16.8, Vol II) The
µ-update is simply (

µk+1

µk+1
b

)
=

(
µk

µkb

)
+

(
wk+1

bk+1

)
−
(
zk+1

zk+1
b

)
.

In summary, the ADMM steps to solve elastic net regression are(
wk+1

bk+1

)
=

(
X>X + (K + ρ)In X>1m

1>mX m+ ρ

)−1((
X>y
1>my

)
+ ρ

(
zk − µk
zkb − µkb

))
zk+1 = Sτ/ρ(w

k+1 + µk)

zk+1
b = bk+1 + µkb

µk+1 = µk + wk+1 − zk+1

µk+1
b = µkb + bk+1 − zk+1

b .

Observe that the equation zk+1
b = bk+1 + µkb implies that µk+1

b = 0. But then µ1
b = 0,

which implies z2b = b2 and µ2
b = 0, and so we deduce that µkb = 0 and zk+1

b = bk+1 for all
k ≥ 1.
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A nice feature of this method is that it needs very minor changes to deal with the special
cases where τ = 0 or K = 0.

If τ = 0 and K > 0, Problem (V1) reduces to standard ridge regression with intercept.
In this case, since K > 0, the matrix

B =

(
X>X +KIn X>1m

1>mX m

)
is symmetric positive definite, so the function J(w, b) has a unique minimum obtained by
setting its gradient to zero, which yields the system(

X>X +KIn X>1m
1>mX m

)(
w
b

)
=

(
X>y
1>my

)
, (∗1)

so we have the unique solution(
w
b

)
=

(
X>X +KIn X>1m

1>mX m

)−1(
X>y
1>my

)
. (∗2)

This amounts to setting ρ = 0 in the equation(
wk+1

bk+1

)
=

(
X>X + (K + ρ)In X>1m

1>mX m+ ρ

)−1((
X>y
1>my

)
+ ρ

(
zk − µk
zkb − µkb

))
. (∗3)

In this case no iteration is necessary. In writing a computer program implementing this
method we simply need to have a test for τ = 0. If τ > 0, we go through the ADMM steps,
else if τ = 0 and K > 0, we compute (

w
b

)
using (∗2), and we skip the loop of iteration steps.

If K = 0 and τ > 0, then Problem (V1) reduces to lasso regression with intercept.
Nothing needs to be changed.

The case K = 0 and τ = 0 is interesting and can be handled. If τ = 0, the function
Sτ/ρ = S0 is the identity, so we have the update

zk+1 = Sτ/ρ(w
k+1 + µk) = wk+1 + µk,

and so

µk+1 = 0

µk+1
b = 0
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for all k ≥ 0, which implies that

zk+1 = wk+1

zk+1
b = bk+1

for all k ≥ 1.

Equation (∗3) still applies with K = 0. Altough we have no proof at this time, we
conjecture that ADMM converges to the solution given by the pseudo-inverse of

B =

(
X>X X>1m
1>mX m

)
,

namely (
w
b

)
=

(
X>X X>1m
1>mX m

)+(
X>y
1>my

)
. (∗4)

In writing a computer program that covers the case τ = K = 0, it is better to test
whether τ > 0 or K = 0 (which covers the case τ = K = 0) and run the ADMM steps as
usual, or if τ = 0 and K > 0, then to use (∗2) and skip the loop of iteration steps. Another
option when τ = 0 and K = 0 is to compute w and b using the pseudo-inverse as in (∗4)
and skip the ADMM loop altogether. Our implemention shows that both options compute
the same solution within an error smaller than 10−10, confirming our conjecture that in this
case, ADMM converges to the pseudo-inverse solution.

2 Solving the Problem Using the Dual of Version 3

We show that the dual program of Version 3 of elastic net regression (see below) can be
explicitly derived and then solved using ADMM. It turns out that the values of the Lagrange
multipliers α+ and α− are uniquely determined and then the minimal solution (w, b) can be
computed in terms of α+ and α− because the matrix

B =

(
X>X +KIn X>1m

1>mX m

)
is positive definite if K > 0, and thus invertible.

However, in the case of lasso where K = 0, the matrix B is not necessarily invertible
and it may not be possible to find an explicit expression for the dual function G(α+, α−) in
terms of the Lagrange multipliers α+ and α−. Even if we could, we have no way of finding
(w, b) from α+ and α−. We tried to use the pseudo-inverse of B but this method does not
yield a correct minimal solution in all cases.

The formulation of the primal problem Version 3 is obtained from Version 1 by replacing
the term τ ‖w‖1 by τ1>n ε and adding two constraints as in Version 2.
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Program (elastic net V3):

minimize J(w, b, ε) =
1

2
(Xw + b1m − y)>(Xw + b1m − y) +

1

2
Kw>w + τ1>n ε

subject to

w ≤ ε

− w ≤ ε,

where K > 0 and τ ≥ 0 are two constants controlling the influence of the `2-regularization
and the `1-regularization. Expanding (Xw + b1m − y)>(Xw + b1m − y) as in Section 1 and
subtracting the constant term 1

2
y>y, we obtain

Program (elastic net V3):

minimize J(w, b, ε) =
1

2

(
w> b

)(X>X +KIn X>1m
1>mX m

)(
w
b

)
−
(
w> b

)(X>y
1>my

)
+ τ1>n ε

subject to

w ≤ ε

− w ≤ ε,

Let α+ ∈ Rn
+ be vectors of Lagrange multipliers associated with the inequalities w−ε ≤ 0

and let α− ∈ Rn
+ be Lagrange multipliers associated with the inequalities −w− ε ≤ 0. Then

the Lagrangian is

L(w, b, ε, α+, α−) = J(w, b, ε) + (w − ε)>α+ + (−w − ε)>α−

=
1

2

(
w> b

)(X>X +KIn X>1m
1>mX m

)(
w
b

)
−
(
w> b

)(X>y
1>my

)
+ w>(α+ − α−) + ε>(τ1n − α+ − α−)

=
1

2

(
w> b

)(X>X +KIn X>1m
1>mX m

)(
w
b

)
−
(
w> b

)(X>y − α+ + α−
1>my

)
+ ε>(τ1n − α+ − α−).

To find the dual function G(α+, α−), we minimize L(w, b, ε, α+, α−) with respect to w, b
and ε. Since L(w, b, ε, α+, α−) is a convex function (the quadratic term involves a symmetric
positive semidefinite matrix) defined on a vector space, a minimum exists iff the gradient
∇Lw,b,ε vanishes; see Theorem 4.13(4) of Gallier and Quaintance [6]. We have

∇Lw,b,ε =

(X>X +KIn X>1m
1>mX m

)(
w
b

)
−
(
X>y − α+ + α−

1>my

)
τ1n − α+ − α−

 ,

so we get the equations(
X>X +KIn X>1m

1>mX m

)(
w
b

)
=

(
X>y − α+ + α−

1>my

)
α+ + α− = τ1n.
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This suggests to express the right-hand side of the first equation in terms of the vector
of dimension 2n whose first n components are α+ and whose last n components are α−. We
can write (

X>y − α+ + α−
1>my

)
=

(
−α+ + α−

0

)
+

(
X>y
1>my

)
=

(
−In In
0>n 0>n

)(
α+

α−

)
+

(
X>y
1>my

)
.

Therefore we can write(
X>X +KIn X>1m

1>mX m

)(
w
b

)
=

(
X>y − α+ + α−

1>my

)
=

(
−In In
0>n 0>n

)(
α+

α−

)
+

(
X>y
1>my

)
,

and we have the equations(
X>X +KIn X>1m

1>mX m

)(
w
b

)
=

(
−In In
0>n 0>n

)(
α+

α−

)
+

(
X>y
1>my

)
(eq1)

α+ + α− = τ1n. (eq2)

It is convenient to define the (n + 1) × (n + 1) matrix B, the (n + 1) × 2n matrix B1, and
the (n+ 1)× 1 matrix B2 as

B =

(
X>X +KIn X>1m

1>mX m

)
B1 =

(
−In In
0>n 0>n

)
B2 =

(
X>y
1>my

)
,

so that (
X>y − α+ + α−

1>my

)
= B1

(
α+

α−

)
+B2, (eq3)

and (eq1) can be written more concisely as

B

(
w
b

)
= B1

(
α+

α−

)
+B2. (eq4)

Up to this point we never used the fact that B is SPD (since in elastic net regression,
K > 0). This allows us to express the dual function G(α+, α−) explicitly in terms of α+ and
α− and thus to obtain the dual program. If K = 0 and B is not invertible, we seem to be
stuck. In order to proceed we assume that K > 0 (and τ > 0).
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Since B is SPD, it is invertible so we obtain(
w
b

)
= B−1B1

(
α+

α−

)
+B−1B2. (eq5)

If (w, b, ε) is a minimizer of the Lagrangian L(w, b, ε, α+, α−) (holding α+, α− fixed), since
the Lagrangian is

L(w, b, ε, α+, α−) =
1

2

(
w> b

)(X>X +KIn X>1m
1>mX m

)(
w
b

)
−
(
w> b

)(X>y − α+ + α−
1>my

)
+ ε>(τ1n − α+ − α−),

by (eq2), (eq3), and the definition of the matrices B,B1, B2, we obtain

G(α+, α−) =
1

2

(
w> b

)
B

(
w
b

)
−
(
w> b

)(
B1

(
α+

α−

)
+B2

)
.

Since B is symmetric, Equation (eq5) yields(
w> b

)
=
(
α>+ α>−

)
B>1 B

−1 +B>2 B
−1, (eq6)

so using (eq4) and (eq6) we obtain

G(α+, α−) =
1

2

((
α>+ α>−

)
B>1 B

−1 +B>2 B
−1)(B1

(
α+

α−

)
+B2

)
−
((
α>+ α>−

)
B>1 B

−1 +B>2 B
−1)(B1

(
α+

α−

)
+B2

)
= −1

2

((
α>+ α>−

)
B>1 B

−1 +B>2 B
−1)(B1

(
α+

α−

)
+B2

)
= −1

2

(
α>+ α>−

)
B>1 B

−1B1

(
α+

α−

)
−
(
α>+ α>−

)
B>1 B

−1B2 −
1

2
B>2 B

−1B2.

The dual problem, which is to maximize G(α+, α−) subject to Equation (eq2), is equiv-
alent to minimizing −G(α+, α−) subject to Equation (eq2), and since the constant term
−1

2
B>2 B

−1B2 is irrelevant, we obtain the following dual program:

Program (dual elastic net V3):

minimize
1

2

(
α>+ α>−

)
B>1 B

−1B1

(
α+

α−

)
+
(
α>+ α>−

)
B>1 B

−1B2

subject to

α+ + α− = τ1n

α+ ≥ 0, α− ≥ 0.
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The equation
α+ + α− = τ1n

is written in matrix form as (
In In

)(α+

α−

)
= τ1n,

and the matrix of the system obviously has rank n. Since B is SPD, so is B−1, and it is
well known that B>1 B

−1B1 is symmetric positive semidefinite, thus ADMM applies. Once
α+ and α− are computed, w and b are given by Equation (eq5).

Observe that Equation (eq1) implies that

α+ − α− = −(X>X +KIn)w − (X>1m)b+X>y, (eq1a)

and since Equation (eq2) is
α+ + α− = τ1n, (eq2)

we see that for any minimal solution (w, b), the Lagrange multipliers α+ and α− are uniquely
determined by

α+ =
1

2

(
−(X>X +KIn)w − (X>1m)b+X>y + τ1n

)
(∗α+)

α− =
1

2

(
(X>X +KIn)w + (X>1m)b−X>y + τ1n

)
. (∗α−)

Actually, the components of α+ and α− corresponding to nonzero components wi of w in
a minimal solution (w, b) are either τ or 0 depending on the sign of wi.

Proposition 2.1. For any minimal solution (w, b), we have |wi| = εi for i = 1, . . . , n.
Furthermore, if wi = εi > 0, then (α+)i = τ and (α−)i = 0, and if wi = −εi < 0, then
(α+)i = 0 and (α−)i = τ .

Proof. For a minimal solution (w, b), we have α+, α− ≥ 0,

w − ε ≤ 0

−w − ε ≤ 0

α+ + α− = τ1n,

and we have the KKT equations

α>+(w − ε) = 0 (KKT1)

α>−(−w − ε) = 0. (KKT2)

Observe that the inequalities

w − ε ≤ 0

−w − ε ≤ 0
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are equivalent to |wi| ≤ εi for i = 1, . . . , n, so ε ≥ 0. Also, since α+, α− ≥ 0 and α+ + α− =
τ1n, either (α+)i > 0 or (α−)i > 0. We proceed by contradiction.

First assume that wi > 0. If (α−)i > 0, then by (KKT2)

−wi = εi,

and since wi > 0 and εi ≥ 0, this is a contradiction, so we must have (α−)i = 0. Since
α+ + α− = τ1n, we deduce that (α+)i = τ , and by (KKT1), wi = εi.

Next if wi < 0 and (α+)i > 0, then by (KKT1)

wi = εi,

and since wi < 0 and εi ≥ 0, this is a contradiction so we must have (α+)i = 0. Since
α+ + α− = τ1n, we deduce that (α−)i = τ , and by (KKT2), wi = −εi.

If wi = 0, since either (α+)i > 0 or (α−)i > 0, by (KKT1) or (KKT2) we must have
εi = wi = 0. Thus we confirm that for any minimal solution (w, b), we have |wi| = εi.

Corollary 2.2. Since ε ≥ 0, the KKT equations imply that if (α+)i = τ , then wi ≥ 0, if
(α+)i = 0, then wi ≤ 0, and if 0 < (α+)i < τ , then wi = 0.

For wi = 0, any values of (α+)i, (α−)i with (α+)i, (α−)i > 0 and (α+)i + (α−)i = τ are
possible. In this case, −τ ≤ (α+)i − (α−)i ≤ τ . The readers familiar with subgradients in
convex analysis will recognize that (1/τ)(α+−α−) is a subgradient of the non-differentiable
function w 7→ ‖w‖1. This fact is also noted by Hastie, Tibshirani and Wainwright [7].

The previous discusion also explains why if we pick τ big, it becomes more difficult to
satisfy simultaneously the conditions (α+)i + (α−)i = τ , (α+)i > 0 and (α−)i > 0, so many
wi are driven to zero.

Inspired by Section 1, we can attempt to deal with the special cases τ = 0 or K = 0 as
follows.

If τ > 0 and K = 0, then Problem (V3) reduces to lasso. The matrix

B =

(
X>X X>1m
1>mX m

)
in Equation (eq4) is not necessarily invertible. This happens when B has rank strictly smaller
than n+ 1. To overcome this problem we can try using the pseudo-inverse B+ of B, and we
use the matrices B+B1 and B+B2 in Equation (eq5). Similarly, to solve the dual program
we can try using the matrices B>1 B

+B1 and B>1 B
+B2 instead of B>1 B

−1B1 and B>1 B
−1B2.

Unfortunately this “obvious” solution does not work. We have an example of a data set with
two linearly independent column vectors x1 and x2 of dimension 8 to which we add the third
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vector x3 = x1 + x2. For τ = 0.1, ADMM applied to the primal formulation of Section 2
yields the solution

w =

 0.034
0

1.1384

 ,

but the solution obtained by using the pseudo-inverse of B to solve Equation (eq4) with
the same values of the Lagrange multipliers (computed using ∗α+ and ∗α+) whose values are
α+ = (0.1, 0.05, 0.1) and α− = (0, 0.05, 0), is

wps =

0.3998
0.3693
1.7691

 ,

which is incorrect since its second component should be zero. In fact, ‖w‖1 = 1.1688 and
‖wps‖1 = 1.5382, so wps is not a solution of minimal 1-norm. We will discuss this issue
more extensively in Section 3.

If τ = 0 and K > 0, Problem (V3) reduce to ridge regression. In this case there is no
need to use ADMM to solve the dual because α+ = α− = 0n, so the unique minimal solution
is given by (eq4) with α+ = α− = 0n, which is identical to (∗2).

Finally, if τ = 0 and K = 0, then this is the least-squares solution given by a pseudo-
inverse, so we skip the ADMM steps and compute w and b using the pseudo-inverse of B
using (∗4).

Our implementations of the primal version of Section 1 and of the dual version of Section
2 show excellent agreement of the solutions in all the cases where B has full rank, typically
with a numerical difference smaller than 10−10. The use of the pseudo-inverse of B when
K = 0 and τ = 0 appears to be correct, although we have no formal proof of this fact.

We finish this section by proving that the difference (α+−α−)/τ is indeed a subgradient
of the `1-norm function w 7→ ‖w‖1 at w, where (w, b) is any minimal solution.

Recall that if f : Rn → R ∪ {+∞} is a proper convex function1 then for any x ∈ Rn, the
set ∂f(x) of subgradients of f at x is the set (possibly empty) of vectors u ∈ Rn such that

f(z) ≥ f(x) + 〈z − x, u〉, for all z ∈ Rn.

See Gallier and Qaintance [6], Section 15.3, or Rockafellar [8], Section 23.

Proposition 2.3. For any w = (w1, . . . , wn) ∈ Rn, the set ∂f(w) of subgradients u =
(u1, . . . , un) ∈ Rn of the `1-norm function f(w) = ‖w‖1 at w is given by

ui =


1 if wi > 0

−1 if wi < 0

vi ∈ [−1,+1] if wi = 0,

for i = 1, . . . , n.
1To avoid technicalities we assume that f is proper. Norms are proper and convex functions.
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Proof. For i = 1, . . . , n define the function fi : Rn → R by

fi(w1, . . . , wn) = |wi|.

Obviously

f(w1, . . . , wn) = ‖(w1, . . . , wn)‖1 =
n∑
i=1

|wi| =
n∑
i=1

fi(w1, . . . , wn),

and the functions fi are proper and convex. By Proposition 15.23 of Gallier and Qaintance
[6], or Theorem 23.8 of Rockafellar [8], since the the fi are total functions,

∂f(w) = ∂f1(w) + · · ·+ ∂fn(w).

Thus we are reduced to finding ∂fi(w). If wi 6= 0, then fi(w) = wi if wi > 0 and fi(w) = −wi
if wi < 0, so fi is differentiable at w and its gradient is obviously given by

∇fi(w) =

{
ei if wi > 0

−ei if wi < 0,

where ei is the ith canonical basis vector in Rn. In this case ∂fi(w) = {∇fi(w)}.
If wi = 0, then u is a subgradient at w iff

fi(z) ≥ 〈z, u〉 for all z ∈ Rn

iff

|zi| ≥
n∑
j=1

zjuj for all z = (z1, . . . , zn) ∈ Rn.

For z = ej, j 6= i, we obtain
0 ≥ uj

and for z = −ej j 6= i, we obtain
0 ≥ −uj,

so uj = 0 for all j 6= i. Therefore ui must satisfy the condition

|zi| ≥ ziui for all zi ∈ R.

If zi > 0, then
zi ≥ ziui,

which is equivalent to zi(1−ui) ≥ 0 for all zi > 0, and thus we must have 1−ui ≥ 0, namely
ui ≤ 1.

If zi < 0, then
−zi ≥ ziui,
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which is equivalent to −zi(1 + ui) ≥ 0 for all zi < 0, and thus we must have 1 + ui ≥ 0,
namely ui ≥ −1.

Obviously
|zi| ≥ ziui for all zi ∈ R

for all ui such that −1 ≤ ui ≤ +1, so we proved that if wi = 0, then

∂fi(w) = {(0, . . . , 0, ui, 0, . . . , 0) | −1 ≤ ui ≤ +1},

which finishes the proof.

The objective function of the version (V1) of lasso is

J(w, b) =
1

2

(
w> b

)(X>X+ X>1m
1>mX m

)(
w
b

)
−
(
w> b

)(X>y
1>my

)
+ τ ‖w‖1

and we obtain

∂J(w, b) =

(
X>X+ X>1m
1>mX m

)(
w
b

)
−
(
X>y
1>my

)
+

(
τ∂f(w)

0

)
=

(
X>X+ X>1m
1>mX m

)(
w
b

)
−
(
X>y − τ∂f(w)

1>my

)
.

By definition of a subgradient, the function J has a minimum at (w, b) iff 0n+1 ∈ ∂J(w, b)
(see Proposition 15.34 of Gallier and Qaintance [6] or Section 27 in Rockafellar [8]) iff there
is some u ∈ ∂f(w) such that(

X>X+ X>1m
1>mX m

)(
w
b

)
=

(
X>y − τu

1>my

)
.

Earlier using Version (V3) in terms of the Lagrange multipliers we found the equations(
X>X +KIn X>1m

1>mX m

)(
w
b

)
=

(
X>y − α+ + α−

1>my

)
α+ + α− = τ1n.

So now we see the connection between the subgradients of the `1-norm function f(w) =
‖w‖1 and the Lagrange multipliers α+ and α−: for a minimal solution (w, b), the difference
α+ − α− is equal to τu, where u ∈ ∂f(w) is a subgradient the `1-norm function f at w.
It turns out that this subgradient is the same for all minimal solutions (w, b), because the
Lagrange multipliers α+ and α− are the same for all minimal solutions, a fact that is not
obvious at first glance and will be established in Section 3.
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3 Uniqueness of Minimal Solutions for Lasso

When τ > 0 and K = 0, which corresponds to lasso minimization, if X does not have full
rank, it is possible that infinitely many minimizers exist. It is actually possible to figure
out exactly when this happens. To avoid subgradients, we use the formulations (V2) and
(V3) with K = 0. A crucial property is that the Lagrange multipliers α+ and α− have the
same value for all minimal solutions ; see Proposition 3.2. This follows from the fact that
error vectors ξ = y −Xw − b1m have the same value ξ∗ for all minimal solution (w, b); see
Proposition 3.1. Since the Lagrange multipliers α+ and α− are uniquely determined, it turns
out that the set of minimal solutions depends heavily on the sets of indices K0, K+ and K−
given by

K0 = {i ∈ {1, . . . , n} | 0 < (α+)i < τ}
K+ = {i ∈ {1, . . . , n} | (α+)i = τ}
K− = {i ∈ {1, . . . , n} | (α+)i = 0}.

Let

sk =

{
0 if k ∈ K+

+1 if k ∈ K−,

We will show that for any two minimal solutions (w1, b1) and (w2, b2), if we write δ = w2−w1

and η = b2 − b1, then the following equations hold:∑
k∈K+∪K−

δkX
k + η1m = 0,

∑
k∈K+∪K−

(−1)skδk = 0, and δk 6= 0 for some k.

See Proposition 3.4. The above equations place a heavy constraint on the vectors (δ, η),

which belong to the kernel of X̃ = (X 1m). An additional source of constraints comes from
the KKT conditions; see Proposition 3.3. These propositions will allow us to describe the
structure of the minimal solutions. They are convex sets obtained by intersecting a simplex
and an affine space related to the kernel of X̃; see Proposition 5.1, so they are polytopes.

Interestingly some notions of affine geometry arise.2 In particular, a notion of affine
dependence stronger that the usual notion comes up. We characterize this (new?) notion
in Proposition 4.1. The relevant concepts of affine geometry are discussed in Section 4, and
the reader may want to read it first.

We begin by proving that the error vector ξ has the same value for all minimal solutions,
a fact that relies on the fact that the function ξ 7→ 1

2
ξ>ξ is strictly convex.

In the formulation (V2) given by

2This would not be surprising to Eugenio Calabi.
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Program (lasso V2):

minimize
1

2
ξ>ξ + τ1>n ε

subject to

y −Xw − b1m = ξ

w ≤ ε

− w ≤ ε,

we can view the objective function J(ξ, ε, w, b) as a function of ξ, ε, w, b constrained to the
convex set

U = {(ξ, ε, w, b) | y −Xw − b1m = ξ, w ≤ ε, −w ≤ ε},

which is obviously nonempty. As such the objective function

J(ξ, ε, w, b) =
1

2
ξ>ξ + τ1>n ε

is convex, but not strictly convex. However, we can also view the objective function as the
sum

J2(ξ, ε) = J2,1(ξ) + J2,2(ε)

of the two functions

J2,1(ξ) =
1

2
ξ>ξ, J2,2(ε) = τ1>n ε.

In this case J2 is defined on the convex set V1 × V2, where J2,1 is defined on the convex set
V1 given by

V1 = {ξ | (∃ε ∈ Rn)(∃w ∈ Rn)(∃b ∈ R)(y −Xw − b1m = ξ, w ≤ ε, −w ≤ ε)}

and J2,2 is defined on the convex set V2 given by

V2 = {ε | (∃ξ ∈ Rm)(∃w ∈ Rn)(∃b ∈ R)(y −Xw − b1m = ξ, w ≤ ε, −w ≤ ε)}.

Observe that V1 is the projection of U by the projection map π1 : Rm×Rn×Rn×R→ Rm,
given by

π1(ξ, ε, w, b) = ξ

and V2 is the projection of U by the projection map π2 : Rm ×Rn ×Rn ×R→ Rn, given by

π2(ξ, ε, w, b) = ε.

Since π1 and π2 are linear and since U is convex, V1 = π1(U) and V2 = π2(U) are also
convex. We observed earlier that for any ε ∈ V2, we have |w| ≤ ε, so (since τ > 0) the
function J2,2(ε) = τ1>n ε is nonnegative on V2, and obviously the function J2,1(ξ) = 1

2
ξ>ξ is

nonnegative on V1. Therefore, the minimum of the function J2(ξ, ε) = J2,1(ξ) + J2,2(ε) on
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the convex set V1× V2 is the sum of the minima of the functions J2,1(ξ) on V1 and J2,2(ε) on
V2. Since the function J2,1(ξ) = 1

2
ξ>ξ is strictly convex and nonnegative on the nonempty

convex set V1, by Theorem 4.13(2) of Gallier and Quaintance [6], it has a minimum achieved
for a unique ξ, say ξ∗. Therefore,

ξ∗ = y −Xw − b1m

has the same value for all minimal solutions and so(
X 1m

)(w
b

)
= Xw + b1m = y − ξ∗

has the same value for all minimal solutions. This key fact is worth recording as the following
proposition.

Proposition 3.1. Let X̃ be the m× (n+ 1)-matrix

X̃ =
(
X 1m

)
.

If ξ∗ is the unique value of the first component of any minimal solution (ξ, ε) of the objective
function of Problem lasso (V2) on the nonempty convex set U given by

U = {(ξ, ε, w, b) | y −Xw − b1m = ξ, w ≤ ε, −w ≤ ε},

we have

X̃

(
w
b

)
= Xw + b1m = y − ξ∗

for all minimal solutions (w, b) of Problem lasso (V2).

It is well-known that the set of solutions of the linear equation

X̃

(
w
b

)
= y − ξ (∗)

is the affine subspace (
w1

b1

)
+ Ker X̃,

where

(
w1

b1

)
is any solution of (∗), so the set of solutions does not depend on the particular

solution chosen; see Gallier and Quaintance [5], Proposition 7.20. If

(
δ
η

)
is a nonzero vector

in Ker X̃, then δ 6= 0, because

X̃

(
δ
η

)
= Xδ + η1m = 0,
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and δ = 0 implies that η = 0.

Observe that

(X̃)>X̃ =
(
X 1m

)> (
X 1m

)
=

(
X>

1>m

)(
X 1m

)
=

(
X>X X>1m
1>mX m

)
,

the matrix B introduced earlier, and so

B

(
w
b

)
has the same value for all minimal solutions.

Recall that Version (V3) of lasso is

Program (lasso V3):

minimize J(w, b, ε) =
1

2

(
w> b

)(X>X X>1m
1>mX m

)(
w
b

)
−
(
w> b

)(X>y
1>my

)
+ τ1>n ε

subject to

w ≤ ε

− w ≤ ε.

Since the matrix

B =

(
X>X X>1m
1>mX m

)
is symmetric positive semi-definite, the objective function is convex, and since the contraints
are affine, by Theorem 14.6 of Gallier and Quaintance [6], there is a minimal solution (w, b, ε)
iff the KKT equations hold, and using the notations of Section 2, they are expressed as

B

(
w
b

)
= B1

(
α+

α−

)
+B2

α+ + α− = τ1n

α>+(w − ε) = 0 (KKT1)

α>−(−w − ε) = 0 (KKT2)

α+, α− ≥ 0.

If (w1, b1) and (w2, b2) are two minimal solutions, then in view of Proposition 3.1,

X̃

(
w1

b1

)
= X̃

(
w2

b2

)
and B

(
w1

b1

)
= B

(
w2

b2

)
,

so
X>Xw1 +X>1mb1 = X>Xw2 +X>1mb2,

and Equations (∗α+) and (∗α−) show that α+ and α− have the same value for all minimal
solutions. In summary we proved the following crucial and somewhat surprising result.
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Proposition 3.2. The Lagrange multipliers α+ and α− have the same value for all minimal
solutions of Problem lasso (V3). They are given by

α+ =
1

2

(
−X>Xw − (X>1m)b+X>y + τ1n

)
(∗α+)

α− =
1

2

(
X>Xw + (X>1m)b−X>y + τ1n

)
, (∗α−)

for any minimal solution (w, b).

We explained earlier that (
w1

b1

)
−
(
w2

b2

)
is in the kernel of X̃. Since B = (X̃)>X̃ and it is well-known that X̃ and B have the same
kernel (see Proposition 20.4 of Gallier and Quaintance [5]),(

w1

b1

)
−
(
w2

b2

)
is in the kernel of B.

Let (w1, b1) and (w2, b2) be two minimal solutions, and let(
δ
η

)
=

(
w2

b2

)
−
(
w1

b1

)
=

(
w2 − w1

b2 − b1

)
,

a vector in the kernel of X̃. Consider any component δi of δ, with 1 ≤ i ≤ n. By Corollary
2.2, we have the following classification according to the value of (α+)i:

(1) (α+)i = τ . Then by (KKT1), (w1)i ≥ 0 and (w2)i = (w1)i + δi ≥ 0, and so |(w1)i| =
(w1)i and |(w2)i| = (w1)i + δi. We must also have δi ≥ −(w1)i (where −(w1)i ≤ 0).

(2) (α+)i = 0. Then by (KKT2), (w1)i ≤ 0 and (w2)i = (w1)i + δi ≤ 0, and so |(w1)i| =
−(w1)i and |(w2)i| = −(w1)i− δi. We must also have δi ≤ −(w1)i (where −(w1)i ≥ 0).

(3) 0 < (α+)i < τ . Then by (KKT1) and (KKT2), (w1)i = 0 and (w2)i = (w1)i + δi = 0,
so δi = 0.

Thus we have established the following proposition.

Proposition 3.3. Let (w1, b1) and (w2, b2) be two minimal solutions, and let(
δ
η

)
=

(
w2 − w1

b2 − b1

)
,

a vector in the kernel of X̃. For any i with 1 ≤ i ≤ n, the following properties hold:
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(1) If (α+)i = τ , then δi ≥ −(w1)i and (w1)i ≥ 0.

(2) If (α+)i = 0, then δi ≤ −(w1)i and (w1)i ≤ 0.

(3) If 0 < (α+)i < τ , then (w1)i = 0 and δi = 0.

Let us now assume that δ = w2 − w1 6= 0. It will be convenient to define the subsets
K0, K+, K−, K+(δ) and K−(δ) of {1, . . . , n} as follows:

K0 = {i ∈ {1, . . . , n} | 0 < (α+)i < τ}
K+ = {i ∈ {1, . . . , n} | (α+)i = τ}
K− = {i ∈ {1, . . . , n} | (α+)i = 0}

K+(δ) = {i ∈ {1, . . . , n} | δi 6= 0, (α+)i = τ}
K−(δ) = {i ∈ {1, . . . , n} | δi 6= 0, (α+)i = 0}.

Note that K+(δ) ⊆ K+ and K−(δ) ⊆ K−. Since we are assuming that δ 6= 0, we must have
K+(δ) ∪K−(δ) 6= ∅. By definition, δi = 0 if i ∈ K+ −K+(δ) or if i ∈ K− −K−(δ).

Since (w1)i = (w2)i iff δi = 0 and δi = 0 iff i ∈ K0 ∪ (K+ −K+(δ)) ∪ (K− −K−(δ)), the
above analysis shows that

‖w1‖1 =
∑
i∈K0

|(w1)i|+
∑

i∈K+−K+(δ)

|(w1)i|+
∑

i∈K−−K−(δ)

|(w1)i|+
∑

i∈K+(δ)

(w1)i +
∑

j∈K−(δ)

−(w1)j

‖w2‖1 =
∑
i∈K0

|(w1)i|+
∑

i∈K+−K+(δ)

|(w1)i|+
∑

i∈K−−K−(δ)

|(w1)i|+
∑

i∈K+(δ)

((w1)i + δi)

+
∑

j∈K−(δ)

(−(w1)j − δj).

Since w1 and w2 are part of a minimal solution, they have the same 1-norm ‖w1‖1 = ‖w2‖1,
so we deduce that ∑

i∈K+(δ)

δi −
∑

j∈K−(δ)

δj = 0. (†1)

Since δk 6= 0 if k ∈ K+(δ) or k ∈ K−(δ), Equation (†1) implies that K+(δ) ∪K−(δ) has
at least two elements. Also, if w1 = 0, Proposition 3.3 implies that δi > 0 for all i ∈ K+(δ)
and δj < 0 for all j ∈ K−(δ), but then Equation (†1) does not hold. Therefore, we must
have w1 6= 0, and similarly w2 6= 0 since ‖w1‖1 = ‖w2‖1.

Since

(
δ
η

)
is in the kernel of X̃ = [X 1m], together with (†1), we conclude that there is

a linear combination ∑
i∈K+(δ)

δiX
i +

∑
j∈K−(δ)

δjX
j + η1m = 0
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where the X i and Xj are columns of X, with∑
i∈K+(δ)

δi −
∑

j∈K−(δ)

δj = 0.

Observe that if 1m is not a linear combination of the columns of X, then we must have η = 0.
Actually, a condition weaker than linear independence implies that η = 0, but we postpone
a discussion of this condition until later.

In summary we proved the following fact.

Proposition 3.4. Let (w1, b1) and (w2, b2) be two distinct minimal solutions, and let(
δ
η

)
=

(
w2 − w1

b2 − b1

)
,

a nonzero vector in the kernel of X̃. If 1m is not a linear combination of the columns of X,
then η = 0. We have δ = w2 − w1 6= 0, the set of indices K+(δ) ∪ K−(δ) has at least two
elements, and w1, w2 6= 0. For each k ∈ K+(δ) ∪K−(δ), let

sk =

{
0 if k ∈ K+(δ)

+1 if k ∈ K−(δ).

Then we have∑
k∈K+(δ)∪K−(δ)

δkX
k + η1m = 0,

∑
k∈K+(δ)∪K−(δ)

(−1)skδk = 0, and δk 6= 0 for all k.

Since δi = 0 if i ∈ K+−K+(δ) and δi = 0 if i ∈ K−−K−(δ), we can extend the definition
of the sk to K+ ∪K− by

sk =

{
0 if k ∈ K+

+1 if k ∈ K−,

and Proposition 3.4 implies that∑
k∈K+∪K−

δkX
k + η1m = 0,

∑
k∈K+∪K−

(−1)skδk = 0, and δk 6= 0 for some k,

in fact for at least two k ∈ K+ ∪ K−. So we see that for any two distinct minimal solu-
tions w1, w2, the vector δ = w2 − w1 has the property that the subvector consisting of the
components of index i /∈ K0 belongs to the hyperplane of equation∑

k∈K+∪K−

(−1)skδk = 0.
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If we let d = n − |K0| = |K+ ∪ K−|, then this is a hyperplane in Rd that we denote by
HK+,K− . We will use this fact later to characterize the set of minimal solutions.

It is illuminating to figure out what the space of solutions looks like when multiple
solutions exist. We begin with the case of an m× 2 matrix X 6= 0. We also assume that 1m
is not a linear combination of X1 and X2, which implies vectors in the kernel of X̃ are of
the form (δ1, δ2, 0).

Example 3.1. Suppose that (w1, b1) is a minimal solution. If (δ1, δ2, 0) is some vector in

the kernel of X̃, then (δ1, δ2) in the kernel of X. By Proposition 3.4, |K+ ∪ K−| ≥ 2 and
w1 6= 0.

(1) (α+)1 = τ , (α+)2 = τ . This means that K+ = {1, 2} and K− = ∅. Then we must have
δ1 + δ2 = 0, so that the vectors in the kernel are of the form (δ1,−δ1). We have

δ1X
1 + (−δ1)X2 = 0,

and for δ1 6= 0 we get X2 = X1. The classification implies that

(w1)1 ≥ 0, (w1)2 ≥ 0, δ1 ≥ −(w1)1, δ2 ≥ −(w1)2,

and so

δ1 + δ2 = 0, δ1 ≥ −(w1)1, δ2 ≥ −(w1)2,

(w1)1 ≥ 0, (w1)2 ≥ 0, δ1 6= 0, δ2 6= 0.

Since (w1)1 = (w1)2 = 0 is impossible, we conclude that (δ1, δ2) belongs to the line
segment on the line δ1 + δ2 = 0 delimited by the half space δ1 ≥ −(w1)1 and δ2 ≥
−(w1)2. The space of minimal solutions is obtained by translation by w1, so we obtain
the line segment on the line

δ1 + δ2 = µ

and in the orthant defined by δ1, δ2 ≥ 0, where µ = (w1) + (w1)2 = ‖w1‖1 is the
minimum of the 1-norm for all minimal solutions. This is a 1-simplex.

(2) (α+)1 = 0, (α+)2 = τ . This means that K+ = {2} and K− = {1}. Then we must have
−δ1 + δ2 = 0, so that the vectors in the kernel are of the form (δ1, δ1). We have

(−δ1)(−X1) + δ1X
2 = 0,

so for δ1 6= 0 we get X2 = −X1. The classification implies that

(w1)1 ≤ 0, (w1)2 ≥ 0, δ1 ≤ −(w1)1, δ2 ≥ −(w1)2,

and so

− δ1 + δ2 = 0, δ1 ≤ −(w1)1 δ2 ≥ −(w1)2,

(w1)1 ≤ 0, (w1)2 ≥ 0, δ1 6= 0, δ2 6= 0.
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Since (w1)1 = (w1)2 = 0 is impossible, we conclude that (δ1, δ2) belongs to the line
segment on the line −δ1 + δ2 = 0 delimited by the half space δ1 ≤ −(w1)1 and δ2 ≥
−(w1)2. The space of minimal solutions is obtained by translation by w1, so we obtain
the line segment on the line

−δ1 + δ2 = µ

and in the orthant defined by δ1 ≤ 0 and δ2 ≥ 0, where µ = −(w1) + (w1)2 = ‖w1‖1 is
the minimum of the 1-norm for all minimal solutions. This is a 1-simplex.

(3) (α+)1 = τ , (α+)2 = 0. This means that K+ = {1} and K− = {2}. Then we must have
δ1 − δ2 = 0, so that the vectors in the kernel are of the form (δ1, δ1). We have

δ1X
1 + (−δ1)(−X2) = 0,

so for δ1 6= 0 we get X2 = −X1. The classification implies that

(w1)1 ≥ 0, (w1)2 ≤ 0, δ1 ≥ −(w1)1, δ2 ≤ −(w1)2,

and so

δ1 − δ2 = 0, δ1 ≥ −(w1)1, δ2 ≤ −(w1)2,

(w1)1 ≥ 0, (w1)2 ≤ 0, δ1 6= 0, δ2 6= 0.

Since (w1)1 = (w1)2 = 0 is impossible, we conclude that (δ1, δ2) belongs to the line
segment on the line δ1 − δ2 = 0 delimited by the half space δ1 ≥ −(w1)1 and δ2 ≤
−(w1)2. The space of minimal solutions is obtained by translation by w1, so we obtain
the line segment on the line

δ1 − δ2 = µ

and in the orthant defined by δ1 ≥ 0 and δ2 ≤ 0, where µ = (w1) − (w1)2 = ‖w1‖1 is
the minimum of the 1-norm for all minimal solutions. This is a 1-simplex.

(4) (α+)1 = 0, (α+)2 = 0. This means that K+ = ∅ and K− = {1, 2}. Then we must have
−δ1 − δ2 = 0, so that the vectors in the kernel are of the form (δ1,−δ1). We have

(−δ1)(−X1) + δ1(−X2) = 0,

so for δ1 6= 0 we get X2 = X1. The classification implies that

(w1)1 ≤ 0, (w1)2 ≤ 0, δ1 ≤ −(w1)1, δ2 ≤ −(w1)2,

and so

− δ1 − δ2 = 0, δ1 ≤ −(w1)1, δ2 ≤ (w1)2,

(w1)1 ≤ 0, (w1)2 ≤ 0, δ1 6= 0, δ2 6= 0.
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Since (w1)1 = (w1)2 = 0 is impossible, we conclude that (δ1, δ2) belongs to the line
segment on the line δ1 + δ2 = 0 delimited by the half space δ1 ≤ −(w1)1 and δ2 ≤
−(w1)2. The space of minimal solutions is obtained by translation by w1, so we obtain
the line segment on the line

−δ1 − δ2 = µ

and in the orthant defined by δ1 ≤ 0 and δ2 ≤ 0, where µ = −(w1)− (w1)2 = ‖w1‖1 is
the minimum of the 1-norm for all minimal solutions. This is a 1-simplex.

We confirm that either X1 and X2 are affinely dependent, or −X1 and X2 are affinely
dependent, or X1 and −X2 are affinely dependent, or −X1 and −X2 are affinely dependent,
which means that either X2 = X1 or X2 = −X1. We also discovered that in all cases, the
space of minimal solution is a line segment.

Example 3.2. Consider the m× 4 matrix X consisting of the columns

X1, X2,
1

2
(X1 +X2),

2

3
X1 +

1

3
X2,

where X1, X2 and 1m are linearly independent. Here is an explicit example for m = 8
specified in Matlab as follows:

X = [-10, 11; -6, 5; -2, 4; 0, 0; 1, 2; 2, -5; 6, -4; 10, -6];

y = [0; -2.5; 0.5; -2; 2.5; -4.2; 1; 4];

The first column of the matrix X is the column vector X1 = [−10;−6;−2; 0; 1; 2; 6; 10],
and the second column is the column vector X2 = [11; 5; 4; 0; 2;−5;−4;−5]. For this exam-
ple, by running ADMM with τ = 0.1 we find that the Lagrange multipliers are (α+)1 = τ ,
(α+)2 = τ , (α+)3 = τ , (α+)4 = τ , and we obtain the minimal solution

w1 =


0.1578
0.4322
0.7950
0.9160

 , b1 = −1.2265.

In this case K+ = {1, 2, 3, 4}, K− = ∅, and the hyperplane HK+,K− is given by

δ1 + δ2 + δ3 + δ4 = 0,

For any minimal solution w1 = ((w1)1, (w1)2, (w1)3, (w1)4) we have (w1)i ≥ 0, for i = 1, 2, 3, 4,
and ‖w1‖1 = (w1)1 + (w1)2 + (w1)3 + (w1)4 = µ > 0, which is the minimal value of the 1-
norm of all minimal solutions. A vector (δ1, δ2, δ3, δ4) is in the kernel of X and satisfies the
conclusion of Proposition 3.4 if

δ1X
1 + δ2X

2 + δ3
1

2
(X1 +X2) + δ4(

2

3
X1 +

1

3
X2) = 0

δ1 + δ2 + δ3 + δ4 = 0,
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which yields (
δ1 +

1

2
δ3 +

2

3
δ4

)
X1 +

(
δ2 +

1

2
δ3 +

1

3
δ4

)
X2 = 0

δ1 + δ2 + δ3 + δ4 = 0,

and since X1 and X2 are linearly independent, we obtain the linear system

δ1 +
1

2
δ3 +

2

3
δ4 = 0

δ2 +
1

2
δ3 +

1

3
δ4 = 0

δ1 + δ2 + δ3 + δ4 = 0.

The third equation is the sum of the first two, so for this example the kernel of X is contained
in the hyperplane of equation

δ1 + δ2 + δ3 + δ4 = 0.

We see that the space of solutions is a two-dimensional subspace given by

δ1 = −1

2
δ3 −

2

3
δ4

δ2 = −1

2
δ3 −

1

3
δ4,

and where δ3, δ4 are arbitrary. For δ3 = δ4 = −6, we get the vector

(7, 5 − 6, −6),

and for δ3 = 6, δ4 = −6, we get the vector

(1, −1, 6, −6).

The above vectors form a basis of the kernel of X. According to Proposition 3.4, for any
minimal solution w1 we must have

δ1 ≥ −(w1)1, δ2 ≥ −(w1)2, δ3 ≥ −(w1)3, δ4 ≥ −(w1)4.

These inequalities define the polyhedral cone obtained by translating by −w1 the positive
orthant defined by δ1, δ2, δ3, δ4 ≥ 0. So for any δ = w2 − w1, the difference of two minimal
solutions w1 and w2, we see that δ belongs to the intersection of

(1) The kernel KerX, a subspace of dimension 2.

(2) The hyperplane HK+,K− , a subspace of dimension 3.

(3) The translate of the positive orthant by −w1.
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But then w2 = w1 + δ belongs to the intersection of

(1) The affine subspace w1 + KerX, a subspace of dimension 2.

(2) The affine hyperplane w1 +HK+,K− , a subspace of dimension 3.

(3) The positive orthant.

We noted earlier that the affine subspace w1 + KerX does not depend on the choice of
a minimal solution w1. Also, since the hyperplane HK+,K− is given by the equation

δ1 + δ2 + δ3 + δ4 = 0,

it is immediate to see that the affine hyperplane w1 +HK+,K− is given by the equation

δ1 − (w1)1 + δ2 − (w1)2 + δ3 − (w1)3 + δ4 − (w1)3 = 0,

that is,
δ1 + δ2 + δ3 + δ4 = µ,

since µ = ‖w1‖1 = (w1)1 + (w1)2 + (w1)3 + (w1)4. Thus this affine hyperplane w1 +HK+,K−

is the same for all minimal solutions. Let us denote this affine hyperplane by HK+,K−,µ.

Then the space of minimal solutions is contained in the intersection of

(1) The affine subspace w1 + KerX, a subspace of dimension 2.

(2) The affine hyperplane HK+,K−,µ of equation

δ1 + δ2 + δ3 + δ4 = µ.

(3) The positive orthant.

But the intersection of the convex spaces in (2) and (3) is the 3-simplex whose vertices are
the points (µ, 0, 0, 0), (0, µ, 0, 0), (0, 0, µ, 0), (0, 0, 0, µ), and so the space of minimal solutions
is contained in the intersection of this simplex with the affine plane w1 + KerX, resulting in
a polytope, in this case a convex poylygon since w1 + KerX is a subspace of HK+,K−,µ. It
is also immediately verified that any vector w in this polygon is in fact a minimal solution.
We will come back to this point in Proposition 5.1.

In order to find other minimal solutions we compute a basis of the kernel of X. Altough
we already did this earlier, we describe a systematic approach to do so. Since 14 is not a
linear combination of the first two columns of X, the vectors in Ker X̃ are of the form (δ, 0)

where δ ∈ KerX, and since X̃ and B = (X̃)>X̃ have the same kernel but B is symmetric,

we computed an SVD UΣU> of B. Since B is a 5 × 5 matrix and X̃ (and thus B) has
rank 3, the last two columns of U form a basis of KerB. Our program confirms that these
vectors belong to the hyperplane δ1 + δ2 + δ3 + δ4 = 0. In this particular case, if u2 is the last
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column vector in U (with its fifth coordinate, which is 0, dropped) because the signs of the
components of w2 = w1 + u2 are the same as the signs of the components of w1, the vector
w2 = w1 + u2 is also a minimal solution, with

w2 =


0.2016
0.2653
1.5504
0.2838

 , b2 = b1 = −1.2265.

Example 3.3. Consider the m× 4 matrix X consisting of the columns

X1, X2, 2X1 − 3X2, −X1 + 2X2,

where X1, X2 and 1m are linearly independent as above. We also use the data set for m = 8
from Example 3.2 specified in Matlab as follows:

X = [-10, 11; -6, 5; -2, 4; 0, 0; 1, 2; 2, -5; 6, -4; 10, -6];

y = [0; -2.5; 0.5; -2; 2.5; -4.2; 1; 4];

For this example, by running ADMM with τ = 0.1 we find that the Lagrange multipliers
are (α+)1 = τ , (α+)2 = τ , (α+)3 = 0, (α+)4 = τ , and we obtain the minimal solution

w1 =


1.1870
1.0986
−0.0054
0.0101

 , b1 = −1.2265.

In this case K+ = {1, 2, 4}, K− = {3}, and the hyperplane HK+,K− is given by

δ1 + δ2 − δ3 + δ4 = 0.

For any minimal solution w1 = ((w1)1, (w1)2, (w1)3, (w1)4) we have (w1)i ≥ 0, for i = 1, 2, 4,
(w1)3 ≤ 0, and ‖w1‖1 = (w1)1 + (w1)2− (w1)3 + (w1)4 = µ > 0, which is the minimal value of
the 1-norm of all minimal solutions. A vector (δ1, δ2, δ3, δ4) is in the kernel of X and satisfies
the conclusion of Proposition 3.4 if

δ1X
1 + δ2X

2 + δ3(2X
1 − 3X2) + δ4(−X1 + 2X2) = 0

δ1 + δ2 − δ3 + δ4 = 0,

which yields

(δ1 + 2δ3 − δ4)X1 + (δ2 − 3δ3 + 2δ4)X
2 = 0

δ1 + δ2 − δ3 + δ4 = 0,
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and since X1 and X2 are linearly independent, we obtain the linear system

δ1 + 2δ3 − δ4 = 0

δ2 − 3δ3 + 2δ4 = 0

δ1 + δ2 − δ3 + δ4 = 0.

The third equation is the sum of the first two, so for this example the kernel of X is also
contained in the hyperplane of equation

δ1 + δ2 − δ3 + δ4 = 0.

We see that the space of solutions is a two-dimensional subspace with

δ1 = −2δ3 + δ4

δ2 = 3δ3 − 2δ4,

and where δ3, δ4 are arbitrary. For δ3 = δ4 = 1, we get the vector

(−1, 1, 1, 1)

and for δ3 = 1 and δ4 = −1 we get the vector

(−3, 5, 1, −1).

The above vectors form a basis of the space of solutions.

Next the discussion is very similar to the discussion in Example 3.2, except that we need
to consider the hyperplane HK+,K− of equation

δ1 + δ2 − δ3 + δ4 = 0,

and a different orthant. Thus we will not provide as much details.

According to Proposition 3.4, for any minimal solution w1 we must have

δ1 ≥ −(w1)1, δ2 ≥ −(w1)2, δ3 ≤ −(w1)3, δ4 ≥ −(w1)4.

These inequalities define the polyhedral cone obtained by translating by −w1 the orthant
defined by δ1, δ2, δ4 ≥ 0 and δ3 ≤ 0. Let us denote this orthant as O0,0,1,0. So for any
δ = w2−w1, the difference of two minimal solutions w1 and w2, we see that δ belongs to the
intersection of

(1) The kernel KerX, a subspace of dimension 2.

(2) The hyperplane HK+,K− , a subspace of dimension 3.

(3) The translate of the orthant O0,0,1,0 by −w1.
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But then w2 = w1 + δ belong to the intersection of

(1) The affine subspace w1 + KerX, a subspace of dimension 2.

(2) The affine hyperplane w1 +HK+,K− , a subspace of dimension 3.

(3) The orthant O0,0,1,0.

Since the hyperplane HK+,K− is given by the equation

δ1 + δ2 − δ3 + δ4 = 0,

it is immediate to see that the affine hyperplane w1 +HK+,K− is given by the equation

δ1 + δ2 − δ3 + δ4 = µ,

since µ = ‖w1‖1 = (w1)1 + (w1)2 − (w1)3 + (w1)4. Thus this affine hyperplane w1 +HK+,K−

is the same for all minimal solutions. Let us denote this affine hyperplane by HK+,K−,µ.

Then the space of minimal solutions is contained in the intersection of

(1) The affine subspace w1 + KerX, a subspace of dimension 2.

(2) The affine hyperplane HH+,H−,µ of equation

δ1 + δ2 − δ3 + δ4 = µ.

(3) The orthant O0,0,1,0.

But the intersection of the convex spaces in (2) and (3) is the 3-simplex whose vertices are the
points (µ, 0, 0, 0), (0, µ, 0, 0), (0, 0,−µ, 0), (0, 0, 0, µ), and so the space of minimal solutions is
contained in the intersection of this simplex with the affine plane w1 + KerX, resulting in
a polytope, in this case a convex polygon since w1 + KerX is a subspace of HH+,H−,µ. It is
also immediately verified that any vector w in this polygon is in fact a minimal solution. We
will come back to this point in Proposition 5.1.

As in Example 3.3, in order to find other minimal solutions we computed an SVD UΣU>

of B. Again, B is a 5×5 matrix of rank 3, so the last two columns of U form a basis of KerB.
Our program confirms that these vectors belong to the hyperplane δ1 + δ2 − δ3 + δ4 = 0. If
u2 is the last column vector in U (with its fifth coordinate, which is 0, dropped), it turns out
that sign of the fourth component of w2 = w1 + u2 is wrong. However, if we shrink u2 by
replacing it by 0.01u2, then the signs of the components of w2 = w1 + 0.01u2 are the same as
the signs of the components of w1, so the vector w2 = w1 + 0.01u2 is also a minimal solution,
with

w2 =


1.1870
1.1026
−0.0095
0.0020

 , b2 = b1 = −1.2265.
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Example 3.4. Consider the m× 4 matrix X consisting of the columns

X1, X2, 2X1 − 3X2, X1 + 2X2,

where X1, X2 and 1m are linearly independent as above. We also use the data set for m = 8
from Example 3.2 specified in Matlab as follows:

X = [-10, 11; -6, 5; -2, 4; 0, 0; 1, 2; 2, -5; 6, -4; 10, -6];

y = [0; -2.5; 0.5; -2; 2.5; -4.2; 1; 4];

For this example, by running ADMM we find that the Lagrange multipliers are 0 <
(α+)1 < τ , 0 < (α+)2 < τ , (α+)3 = τ , (α+)4 = τ , and we obtain the minimal solution

w1 =


0
0

0.1714
0.8264

 , b1 = −1.23.

In this case K+ = {3, 4}, K− = ∅, and the hyperplane HK+,K− is given by

δ3 + δ4 = 0.

Every minimal solution must be of the form (0, 0, (w1)3, (w1)4). A vector (0, 0, δ3, δ4) is in
the kernel of X and satisfies the conclusion of Proposition 3.4 if

δ3(2X
1 − 3X2) + δ4(X

1 + 2X2) = 0

δ3 + δ4 = 0,

δ1 = 0, δ2 = 0,

which yields

(2δ3 + δ4)X
1 + (−3δ3 + 2δ4)X

2 = 0

δ3 + δ4 = 0,

and since X1 and X2 are linearly independent, we obtain the linear system

2δ3 + δ4 = 0

−3δ3 + 2δ4 = 0

δ3 + δ4 = 0.

The first two equations have the unique solution δ3 = δ4 = 0, since from the first equation
δ4 = −2δ3, and from the second equation −3δ3−4δ3 = −7δ3 = 0. This time the only solution
is the trivial solution (0, 0, 0, 0), so there is a unique minimal solution.

Observe that the vector (−3, 1, 1, 1) is in the kernel of X and for this vector δ1 + δ2 + δ3 +
δ4 = 0, but this vector has all its components nonzero so it does not satisfy the conditions
imposed by the Lagrange multipliers.
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Example 3.5. Consider the m× 3 matrix X consisting of the columns

X1, X2, βX1 + γX2,

where X1, X2 and 1m are linearly independent. In this case the vectors in the kernel of X̃
are of the form (δ1, δ2, δ3, 0), with

δ1X
1 + δ2X

2 + δ3(βX
1 + γX2) = 0,

that is,
(δ1 + βδ3)X

1 + (δ2 + γδ3)X
2 = 0,

and since X1 and X2 are linearly independent, this is equivalent to

δ1 + βδ3 = 0

δ2 + γδ3 = 0.

We deduce that we must have δ3 6= 0 for all nonzero vectors in KerX. Thus if there are
multiple solutions the case K0 = {3} is ruled out. Since we must have |K+ ∪ K−| ≥ 2 in
order to have multiple solutions, the other two possibilies besides K0 = ∅ are K0 = {1} and
K0 = {2}.

If K0 = {1}, then δ1 = 0, in which case, since δ3 6= 0 if there are multiple solutions,
βδ3 = 0 implies that β = 0. There are four cases for K+ and K−, and since δ2 = −γδ3, one
of the following four possibilities must hold:

δ2 + δ3 = (−γ + 1)δ3 = 0

δ2 − δ3 = (−γ − 1)δ3 = 0

−δ2 + δ3 = (γ + 1)δ3 = 0

−δ2 − δ3 = (γ − 1)δ3 = 0,

and since δ3 6= 0, either γ = 1 or γ = −1. Thus the columns of X are X1, X2, X2 or
X1, X2,−X2. Since δ1 = 0, we are back to Example 3.1, with X2, X2 or X2,−X2.

If K0 = {2}, then δ2 = 0, in which case, since δ3 6= 0 if there are multiple solutions, then
γδ3 = 0 implies γ = 0. There are four cases for K+ and K−, and since δ1 = −βδ3, one of the
following four possibilities must hold:

δ1 + δ3 = (−β + 1)δ3 = 0

δ1 − δ3 = (−β − 1)δ3 = 0

−δ1 + δ3 = (β + 1)δ3 = 0

−δ1 − δ3 = (β − 1)δ3 = 0,

and since δ3 6= 0, either β = 1 or β = −1. Thus the columns of X are X1, X2, X1 or
X1, X2,−X1. Since δ2 = 0, we are back to Example 3.1, with X1, X1 or X1,−X1.

If K0 = ∅, then there are eight cases depending of K+ and K−, but actually due to
symmetries we only need to consider four of them, namely the four cases where (α+)1 = τ .
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(1) K+ = {1, 2, 3}, K− = ∅, which means that (α+)1 = (α+)2 = (α+)2 = τ . Then δ1, δ2, δ3
must satisfy the equation

δ1 + δ2 + δ3 = 0,

and since δ1 = −βδ3 and δ2 = −γδ3, we must have

(−β − γ + 1)δ3 = 0.

Since δ3 6= 0 if there are multiple solutions, we must have

β + γ = 1.

In this case γ = 1− β and the kernel of X is a subspace of the plane given by

δ1 + δ2 + δ3 = 0,

which consists of the vectors of the form (−βδ3,−(1 − β)δ3, δ3). Geometrically, these
vectors belong to the line which is the common intersection of the planes given by
δ1 + βδ3 = 0, δ2 + (1 − β)δ3 = 0, and δ1 + δ2 + δ3 = 0. If β = 0, then δ1 = 0, and if
β = 1, we have δ2 = 0, and then we are back to the previous cases.

For any minimal solution w1 = ((w1)1, (w1)2, (w1)3) we have (w1)i ≥ 0, for i = 1, 2, 3,
and ‖w1‖1 = (w1)1 + (w1)2 + (w1)3 = µ > 0, which is the minimal value of the 1-norm
of all minimal solutions. Since we already explained in great detail how to derive the
set of minimal solutions, we simply describe the solution, leaving the details to the
reader.

The set of minimal solutions is the line segment which is the intersection of the 2-
simplex whose vertices are (µ, 0, 0), (0, µ, 0), (0, 0, µ) with both planes obtained by
translating by w1 the planes δ1 + βδ3 = 0 and δ2 + (1− β)δ3 = 0, which are the planes
given by δ1 + βδ3 − (w1)1 − β(w1)3 = 0 and δ2 + (1− β)δ3 − (w1)2 − (1− β)(w1)3 = 0.

A concrete illustration is provided by the data set for m = 8 from Example 3.2 specified
in Matlab as follows:

X = [-10, 11; -6, 5; -2, 4; 0, 0; 1, 2; 2, -5; 6, -4; 10, -6];

y = [0; -2.5; 0.5; -2; 2.5; -4.2; 1; 4];

and for β = 2, γ = −1. For this example, by running ADMM we obtain the minimal
solution

w1 =

0.1004
1.6679
0.5328

 , b1 = −1.2265.

As in Examples 3.3 and 3.4, in order to find other minimal solutions we compute an
SVD UΣU> of B. Here B is a 4 × 4 matrix of rank 3. Our program confirms that
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the last vector in U belong to the hyperplane δ1 + δ2 + δ3 = 0. If u1 is the last
vector in U (with its fourth coordinate, which is 0, dropped), because the signs of the
components of w2 = w1 + u1 are the same as the signs of the components of w1, the
vector w2 = w1 + u1 is also a minimal solution, with

w2 =

0.9169
1.2597
0.1246

 , b2 = b1 = −1.2265.

(2) K+ = {1, 3}, K− = {2}, which means that (α+)1 = (α+)3 = τ and (α+)2 = 0. Then
δ1, δ2, δ3 must satisfy the equation

δ1 − δ2 + δ3 = 0,

and since δ1 = −βδ3 and δ2 = −γδ3, we must have

(−β + γ + 1)δ3 = 0.

Since δ3 6= 0 if there are multiple solutions, we must have

β − γ = 1.

In this case γ = β − 1 and the kernel of X is a subspace of the plane given by

δ1 − δ2 + δ3 = 0,

which consists of the vectors of the form (−βδ3,−(β − 1)δ3, δ3). Geometrically, these
vectors belong to the line which is the common intersection of the planes given by
δ1 + βδ3 = 0, δ2 + (β − 1)δ3 = 0, and δ1 − δ2 + δ3 = 0. If β = 0, then δ1 = 0, and if
β = 1, we have δ2 = 0, and then we are back to the previous cases.

For any minimal solution w1 = ((w1)1, (w1)2, (w1)3) we have (w1)i ≥ 0, for i = 1, 3,
(w1)2 ≤ 0, ‖w1‖1 = (w1)1 − (w1)2 + (w1)3 = µ > 0, which is the minimal value of the
1-norm of all minimal solutions.

The set of minimal solutions is the line segment which is the intersection of the 2-
simplex whose vertices are (µ, 0, 0), (0,−µ, 0), (0, 0, µ) with both planes obtained by
translating by w1 the planes δ1 + βδ3 = 0 and δ2 + (β − 1)δ3 = 0, which are the planes
given by δ1 + βδ3 − (w1)1 − β(w1)3 = 0 and δ2 + (β − 1)δ3 − (w1)2 − (β − 1)(w1)3 = 0.

A concrete illustration is provided by the data set for m = 8 specified in Matlab as
follows:

Xb = [-8, 11.1; 6.1, 5; 2.2, 4; 0, 0; 1, 1.9; 1, -5; 6.2, -4; 5.1, -6];

y = [0; -2.5; 0.5; -2; 2.5; -4.2; 1; 4];
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and for β = 3, γ = 2.

For this example, by running ADMM we obtain the minimal solution

w1 =

 0.0530
−0.0258
0.0040

 , b1 = −0.1824.

As in previous examples, in order to find other minimal solutions we compute an SVD
UΣU> of B. Here B is a 4× 4 matrix of rank 3. Our program confirms that the last
vector in U belong to the hyperplane δ1 − δ2 + δ3 = 0. If u1 is the last column vector
in U (with its fourth coordinate, which is 0, dropped), it turns out that sign of the
third component of w2 = w1 +u1 is wrong. However, if we shrink u1 by replacing it by
0.01u1, then the signs of the components of w2 = w1 + 0.01u1 are the same as the signs
of the components of w1, so the vector w2 = w1 + 0.01u1 is also a minimal solution,
with

w2 =

 0.0449
−0.0311
0.0067

 , b2 = b1 = −0.1824.

(3) K+ = {1, 2}, K− = {3}, which means that (α+)1 = (α+)2 = τ and (α+)3 = 0. Then
δ1, δ2, δ3 must satisfy the equation

δ1 + δ2 − δ3 = 0,

and since δ1 = −βδ3 and δ2 = −γδ3, we must have

(−β − γ − 1)δ3 = 0.

Since δ3 6= 0 if there are multiple solutions, we must have

β + γ = −1.

In this case γ = −(β + 1) and the kernel of X is a subspace of the plane given by

δ1 + δ2 − δ3 = 0,

which consists of the vectors of the form (−βδ3, (β + 1)δ3, δ3). Geometrically, these
vectors belong to the line which is the common intersection of the planes given by
δ1 + βδ3 = 0, δ2 − (β + 1)δ3 = 0, and δ1 + δ2 − δ3 = 0. If β = 0, then δ1 = 0, and if
β = −1, we have δ2 = 0, and then we are back to the previous cases.

For any minimal solution w1 = ((w1)1, (w1)2, (w1)3) we have (w1)i ≥ 0, for i = 1, 2,
(w1)3 ≤ 0, ‖w1‖1 = (w1)1 + (w1)2 − (w1)3 = µ > 0, which is the minimal value of the
1-norm of all minimal solutions.

34



The set of minimal solutions is the line segment which is the intersection of the 2-
simplex whose vertices are (µ, 0, 0), (0, µ, 0), (0, 0,−µ) with both planes obtained by
translating by w1 the planes δ1 + βδ3 = 0 and δ2− (β + 1)δ3 = 0, which are the planes
given by δ1 + βδ3 − (w1)1 − β(w1)3 = 0 and δ2 − (β + 1)δ3 − (w1)2 + (β + 1)(w1)3 = 0.

A concrete illustration is also provided by the data set for m = 8 from Example 3.2
specified in Matlab as follows:

X = [-10, 11; -6, 5; -2, 4; 0, 0; 1, 2; 2, -5; 6, -4; 10, -6];

y = [0; -2.5; 0.5; -2; 2.5; -4.2; 1; 4];

and for β = 2, γ = −3. For this example, by running ADMM we obtain the minimal
solution

w1 =

 1.1742
1.1228
−0.0041

 , b1 = −1.2265.

As in previous examples, in order to find other minimal solutions we compute an SVD
UΣU> of B. Here B is a 4 × 4 matrix of rank 3. Our program confirms that the
last vector in U belong to the hyperplane δ1 + δ2 − δ3 = 0. If u1 is the last column
vector in U (with its fourth coordinate, which is 0, dropped), because the signs of the
components of w2 = w1 + u1 are the same as the signs of the components of w1, the
vector w2 = w1 + u1 is also a minimal solution, with

w2 =

 1.7087
0.3211
−0.2713

 , b2 = b1 = −1.2265.

(4) K+ = {1}, K− = {2, 3}, which means that (α+)1 = τ , and (α+)2 = (α+)3 = 0. Then
δ1, δ2, δ3 must satisfy the equation

δ1 − δ2 − δ3 = 0,

and since δ1 = −βδ3 and δ2 = −γδ3, we must have

(−β + γ − 1)δ3 = 0.

Since δ3 6= 0 if there are multiple solutions, we must have

−β + γ = 1.

In this case γ = β + 1 and the kernel of X is a subspace of the plane given by

δ1 − δ2 − δ3 = 0,
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which consists of the vectors of the form (−βδ3,−(β + 1)δ3, δ3). Geometrically, these
vectors belong to the line which is the common intersection of the planes given by
δ1 + βδ3 = 0, δ2 + (β + 1)δ3 = 0, and δ1 − δ2 − δ3 = 0. If β = 0, then δ1 = 0, and if
β = −1, we have δ2 = 0, and then we are back to the previous cases.

For any minimal solution w1 = ((w1)1, (w1)2, (w1)3) we have (w1)1 ≥ 0, (w1)i ≤ 0 for
i = 2, 3, ‖w1‖1 = (w1)1 − (w1)2 − (w1)3 = µ > 0, which is the minimal value of the
1-norm of all minimal solutions.

The set of minimal solutions is the line segment which is the intersection of the 2-
simplex whose vertices are (µ, 0, 0), (0,−µ, 0), (0, 0,−µ) with both planes obtained by
translating by w1 the planes δ1 + βδ3 = 0 and δ2 + (β + 1)δ3 = 0, which are the planes
given by δ1 + βδ3 − (w1)1 − β(w1)3 = 0 and δ2 + (β + 1)δ3 − (w1)2 − (β + 1)(w1)3 = 0.

A concrete illustration is provided by the data set for m = 8 specified in Matlab as
follows:

Xb2=[-10, 11.1; 6.1, 5; 2.2, 4; 0, 0; 1, 1.9; 1, -5; 6.2, -4; 4.1, -6];

y = [0; -2.5; 0.5; -2; 2.5; -4.2; 1; 4];

and for β = 2, γ = 3. For this example, by running ADMM we obtain the minimal
solution

w1 =

 0.0358
−0.0039
−0.0141

 , b1 = −0.0573.

As in previous examples, in order to find other minimal solutions we compute an SVD
UΣU> of B. Here B is a 4× 4 matrix of rank 3. Our program confirms that the last
vector in U belong to the hyperplane δ1 − δ2 − δ3 = 0. If u1 is the last column vector
in U (with its fourth coordinate, which is 0, dropped), it turns out that signs of the
first and third components of w2 = w1 + u1 are wrong. However, if we shrink u1 by
replacing it by 0.01u1, then the signs of the components of w2 = w1 + 0.01u1 are the
same as the signs of the components of w1, so the vector w2 = w1 + 0.01u1 is also a
minimal solution, with

w2 =

 0.0305
−0.0119
−0.0114

 , b2 = b1 = −0.0573.

The four cases in which (α+)1 = 0 are symmetric to the previous cases. In these cases,
the line segments are on the negative side of the the plane x = 0 (which means that
x ≤ 0) instead of the positive side (which means that x ≥ 0).
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4 Some Relevant Concepts of Affine Geometry

Proposition 3.4 suggests that some notions of affine geometry are relevant. In order to make
this clear we rewrite the conclusion of Proposition 3.4 by introducing

βk = (−1)skδk,

and then we have∑
k∈K+(δ)∪K−(δ)

βk
(
(−1)skXk

)
+ η1m = 0,

∑
k∈K+(δ)∪K−(δ)

βk = 0, and βk 6= 0 for all k.

The key point is that if η = 0, then the above conditions are reminiscent of the notion of
affine dependence of the family

(
(−1)skXk

)
k∈K+(δ)∪K−(δ)

. In fact a stronger notion of affine

dependence is needed, as we now explain in detail.

The reader may consult Gallier [4, 3], Berger [1], Boyd and Vandenberghe [2], Rockafellar
[8], or Ziegler [9], for the basic notions of affine and convex geometrty involved. Technically
an affine space is more than a vector space, since it consists of a transitive and faithful action
of a vector space V on a set A of points, but in our situation V = A, and the action is just
vector addition, so we can simplify our definitions a bit.

Given a family of vectors (a1, . . . , an), recall that an affine combination is a linear com-
bination

λ1a1 + · · ·+ λnan with λ1 + · · ·+ λn = 1, λi ∈ R.

A convex combination is an affine combination such that the scalars λ1, . . . , λn ∈ R also
satisfy the conditions λi ≥ 0 for i = 1, . . . , n.

A family of vectors (a1, . . . , an) is affinely independent iff either n = 1 (the family consists
of a single point) or n ≥ 2 and the family (a2 − a1, . . . , an − a1) is linearly independent. If
n = 1, we see that any family (a1) consisting of a single vector (even the zero vector) is affinely
independent. A family (a1, . . . , an) is affinely dependent iff it is not affinely independent. It
can be shown that a family of vectors (a1, . . . , an) is affinely dependent iff there is a family
of scalars (λ1, . . . , λn) such that

λ1a1 + · · ·+ λnan = 0, λ1 + · · ·+ λn = 0,

and λi 6= 0 for some i, 1 ≤ i ≤ n.

In this case we must have n ≥ 2 and at least two scalars λi, λj are nonzero. Then we see
that a family of vectors (a1, . . . , an) is affinely independent iff for all (λ1, . . . , λn), if

λ1a1 + · · ·+ λnan = 0 and λ1 + · · ·+ λn = 0,

then λi = 0 for all i, 1 ≤ i ≤ n.

Observe that affine independence is a weaker notion that linear independence since linear
independence must apply to all n-tuples (λ1, . . . , λn), not only to those for which λ1 + · · ·+
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λn = 0. For example, three vectors in R2 are affinely independent if they are the vertices of
a nondegenerate triangle (a triangle not collapsed to three collinear points), but any three
vectors in R2 are never linearly independent.

An affine subspace A is either the empty set or it is closed under affine combinations. It
can be shown that if A is a nonempty affine subspace, then

−→
A = {b− a | a, b ∈ A}

is a vector space called the direction of A and that

A = a+
−→
A = {a+ u | u ∈

−→
A }

for all a ∈ A. The dimension of the affine subspace A is the dimension of the vector space
−→
A .

A convex set C in Rn is either the empty set or it is closed under convex combinations.

Given a nonempty family of vectors S, the affine subspace spanned by S is the set aff(S)
of all affine combinations of finite families of vectors (a1, . . . , an) with ai ∈ S.

The convex hull of the nonempty family S is the set conv(S) of all convex combinations
of finite families (a1, . . . , an) with ai ∈ S.

The dimension of a convex set C is the dimension of the affine space aff(C) spanned by
C.

Given any d + 1 vectors (a1, . . . , ad+1) in Rn, where d ≤ n, if (a1, . . . , ad+1) are affinely
independent, then the convex hull conv(a1, . . . , ad+1) is called a d-simplex . Obviously any
two d-simplices can be mapped into one another by a bijective affine map. The standard
d-simplex ∆d is the simplex in Rn+1 spanned by the canonical basis vectors e1, . . . , ed+1, with
ei = (0, . . . , 0, 1, 0, . . . , 0) with 1 in the ith position. Obviously

∆d = {(x1, . . . , xd+1) ∈ Rd+1 | x1 + · · ·+ xd+1 = 1, xi ≥ 0, i = 1, . . . , d+ 1}.

If η = 0 in Proposition 3.4, then∑
k∈K+(δ)∪K−(δ)

βk
(
(−1)skXk

)
= 0,

∑
k∈K+(δ)∪K−(δ)

βk = 0,

and βk 6= 0 for all k ∈ K+(δ) ∪K−(δ),

so the family ((−1)skXk)k∈K+(δ)∪K−(δ) is affinely dependent, but in a stronger way. To capture
this notion we propose the following definition.

Definition 4.1. A family of vectors (a1, . . . , an) is strongly affinely dependent if there is a
family of scalar (λ1, . . . , λn) such that

λ1a1 + · · ·+ λnan = 0, λ1 + · · ·+ λn = 0,

and λi 6= 0 for all i, 1 ≤ i ≤ n.

38



A family (a1, . . . , an) is weakly affinely independent iff it is not strongly affinely dependent
iff for all (λ1, . . . , λn), if

λ1a1 + · · ·+ λnan = 0 and λ1 + · · ·+ λn = 0,

then λi = 0 for some i, 1 ≤ i ≤ n.

Clearly strong affine dependence implies affine dependence and affine independence im-
plies weak affine independence.

If the family (a1, . . . , an) is strongly affinely dependent, since λi 6= 0 for all i and λ1 +
· · ·+ λn = 0, we have

−λiai =
∑
j 6=i

λjaj, −λi =
∑
k 6=i

λk,

and so

ai =
∑
j 6=i

λj∑
k 6=i λk

aj,

which means that ai belongs to the affine subspace spanned by the family (aj)j 6=i, and
consequently the affine subspaces spanned by the n + 1 families (ai)

n
i=1 and (aj)

n
j=1,j 6=i, for

i = 1, . . . , n are all identical. We will prove the converse shortly using a trick involving roots
of polynomials.

Example 4.1. For example if (a1, a2, a3, a4) are strongly affinely dependent, the affine sub-
spaces spanned by (a1, a2, a3, a4), (a2, a3, a4), (a1, a3, a4), (a1, a2, a4), and also (a1, a2, a3) are
all identical. If the dimension of this subspace if 2, then (a2, a3, a4), (a1, a3, a4), (a1, a2, a4)
all span the same (affine) plane, so they are affinely independent.

On the other hand, if (a1, a2, a3) belong to a line (an affine subspace of dimension 1) and
a4 does not belong to this line, then (a1, a2, a3, a4) are affinely dependent but not strongly
affinely dependent, since otherwise a4 would belong to this line.

Proposition 4.1. A family of vectors (a1, . . . , an) is strongly affinely dependent iff the affine
subspaces spanned by the n+1 families (ai)

n
i=1 and (aj)

n
j=1,j 6=i, for i = 1, . . . , n are all identical.

Proof. We already proved that if the family (a1, . . . , an) is strongly affinely dependent, then
the affine subspaces spanned by the n+ 1 families (ai)

n
i=1 and (aj)

n
j=1,j 6=i, for i = 1, . . . , n are

all identical.

Conversely assume that the affine subspaces spanned by the n + 1 families (ai)
n
i=1 and

(aj)
n
j=1,j 6=i, are all identical. Let A be this common subspace and say A has dimension d.

Since A is spanned by each of the families (aj)
n
j=1,j 6=i that has n − 1 vectors, we must have

d ≤ n− 2. There is a subsequence of d+ 1 ≤ n− 1 vectors that are affinely independent and
A is spanned by these vectors. Reindexing our vectors if needed we may assume that these
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vectors are a1, . . . , ad+1. The remaining n− (d+ 1) ≥ 1 vectors aj are affine combinations of
a1, . . . , ad+1, so there are unique scalars λkj (1 ≤ j ≤ d+ 1, 1 ≤ k ≤ n− (d+ 1)) such that

λ11a1 + · · ·+ λ1jaj + · · ·+ λ1d+1ad+1 = ad+2,

...

λ
n−(d+1)
1 a1 + · · ·+ λ

n−(d+1)
j aj + · · ·+ λn−(d+1)ad+1 = an,

with
λk1 + · · ·+ λkj + · · ·+ λkd+1 = 1, 1 ≤ k ≤ n− (d+ 1).

Observe for every j = 1, . . . , d + 1, there is some k with 1 ≤ k ≤ n − (d + 1) such
that λkj 6= 0, in other words, every column of the above linear system has some nonzero
entry. Otherwise, for some j such that 1 ≤ j ≤ d + 1, we would have λkj = 0 for all k with
1 ≤ k ≤ n− (d + 1), and then the space A spanned by the family (aj)

n
j=1,j 6=i would also be

spanned by (a1, . . . , aj−1, aj+1, . . . , ad+1), and so A would have dimension stricty less than d,
a contradiction. If we can find n− 1 scalars µj 6= 0 so that

an = µ1a1 + · · ·+ µn−1an−1, µ1 + · · ·+ µn−1 = 1,

we are done because
µ1a1 + · · ·+ µn−1an−1 − an = 0

is a strong affine dependence since µj 6= 0 for j = 1, . . . , n− 1 and µ1 + · · ·+ µn−1 − 1 = 0.

If d = n− 2, there is a single equation

λ11a1 + · · ·+ λ1n−1an−1 = an

with λ11+· · ·+λ1n−1 = 1, and by the previous remark we must have λ1j 6= 0 for j = 1, . . . , n−1.
In this case we are done. Let us now asssume that d ≤ n− 3.

Consider the system

λ11a1 + · · ·+ λ1jaj + · · ·+ λ1d+1ad+1 = ad+2

...

λ
n−(d+2)
1 a1 + · · ·+ λ

n−(d+2)
j aj + · · ·+ λn−(d+2)ad+1 = an−1

λ
n−(d+1)
1 a1 + · · ·+ λ

n−(d+1)
j aj + · · ·+ λn−(d+1)ad+1 = an.

If we multiply the first equation of the system above by ρn−(d+2) for some ρ 6= 0 to be
determined later, the second equation by ρn−(n+3), and so on, with the next to last equation
multiplied by ρ, by adding up these n− (d+ 1) equations we get the equation

ν1a1 + · · ·+ νd+1ad+1 = ρn−(d+2)ad+2 + · · ·+ ρan−1 + an,
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with
νj = ρn−(d+2)λ1j + · · ·+ ρλ

n−(d+2)
j + λ

n−(d+1)
j , 1 ≤ j ≤ d+ 1.

We also have

ν1 + · · ·+ νd+1 = ρn−(d+2)λ11 + · · ·+ ρλ
n−(d+2)
1 + λ

n−(d+1)
1 + · · ·

+ ρn−(d+2)λ1d+1 + · · ·+ ρλ
n−(d+2)
d+1 + λ

n−(d+1)
d+1

= ρn−(d+2)(λ11 + · · ·+ λ1d+1) + · · ·+ ρ(λ
n−(d+2)
1 + · · ·+ λ

n−(d+2)
d+1 )

+ λ
n−(d+1)
1 + · · ·+ λ

n−(d+1)
d+1

= ρn−(d+2) + · · ·+ ρ+ 1,

since
λk1 + · · ·+ λkj + · · ·+ λkd+1 = 1, 1 ≤ k ≤ n− (d+ 1).

Consequently,

an = ν1a1 + · · ·+ νd+1ad+1 + (−ρn−(d+2))ad+2 + · · ·+ (−ρ)an−1,

with

ν1 + · · ·+ νd+1 − (ρn−(d+2) + · · ·+ ρ) = ρn−(d+2) + · · ·+ ρ+ 1− (ρn−(d+2) + · · ·+ ρ) = 1.

We claim that can pick some ρ 6= 0 so that

νj = ρn−(d+2)λ1j + · · ·+ ρλ
n−(d+2)
j + λ

n−(d+1)
j 6= 0, 1 ≤ j ≤ d+ 1.

Observe that for j = 1, . . . , d + 1, (λ1j . . . , λ
n−(d+2)
j , λ

n−(d+1)
j ) constitute the elements of the

jth column of the system

λ11a1 + · · ·+ λ1jaj + · · ·+ λ1d+1ad+1 = ad+2

...

λ
n−(d+2)
1 a1 + · · ·+ λ

n−(d+2)
j aj + · · ·+ λn−(d+2)ad+1 = an−1

λ
n−(d+1)
1 a1 + · · ·+ λ

n−(d+1)
j aj + · · ·+ λn−(d+1)ad+1 = an,

so by a previous remark, λkj 6= 0 for some k with 1 ≤ k ≤ n− (d+ 1). Therefore, viewing ρ
as a variable, the d+ 1 polynomials

ρn−(d+2)λ1j + · · ·+ ρλ
n−(d+2)
j + λ

n−(d+1)
j

are nonzero polynomials of degree at most n − (d + 2). Since a real polynomial of degree
n − (d + 2) has at most n − (d + 1) distinct roots in C, we can pick ρ 6= 0 (in R) distinct
from all these roots and ensure that

ρn−(d+2)λ1j + · · ·+ ρλ
n−(d+2)
j + λ

n−(d+1)
j 6= 0, 1 ≤ j ≤ d+ 1,

which finishes the proof.
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Going back to Proposition 3.4, if η 6= 0, by dividing by η we see that either 1m is a linear
combination

1m =
∑

k∈K+(δ)∪K−(δ)

γk
(
(−1)skXk

)
for some γk 6= 0 (in fact, γk = −βk/η) such that∑

k∈K+(δ)∪K−(δ)

γk = 0,

or else η = 0 and the family ((−1)skXk)k∈K+(δ)∪K−(δ) is strongly affinely dependent.

Using the above remark and taking the negation of Proposition 3.4, we obtain the fol-
lowing result which gives sufficient conditions for lasso to have a unique minimal solution.

Proposition 4.2. For every family ((−1)skXk)k∈K where K ⊆ {1, . . . , n} and the Xk are
columns of X, with sk = 0, 1, for every scalar η, for every sequence (βk)k∈K, if |K| ≥ 2 and∑

k∈K

βk = 0 and η1m +
∑
k∈K

βk
(
(−1)skXk

)
= 0

implies that βk = 0 for some k ∈ K, then the minimal solution (w, b) is unique.

Equivalently, for every family ((−1)skXk)k∈K where K ⊆ {1, . . . , n} and the Xk are
columns of X, with sk = 0, 1, if

(1) for every sequence (βk)k∈K, if |K| ≥ 2 and∑
k∈K

βk = 0 and 1m =
∑
k∈K

βk
(
(−1)skXk

)
implies that βk = 0 for some k ∈ K, and

(2) the family ((−1)skXk)k∈K is weakly affinely independent,

then the minimal solution (w, b) is unique.

Hastie, Tibshirani and Wainwright define what it means for the columns of the matrix X
to be in general position; see [7], Section 2.6. In our terminology this is basically the condition
that the families ((−1)skXk)k∈K are affinely independent. This condition is stronger that
weak affine independence so our Proposition 4.2 is a stronger result. In practice this really
does not make any difference because data sets, unless they are rather pathological, satisfy
the stronger assumption (being in general position). Hastie, Tibshirani and Wainwright also
do not deal with the intercept b.

Observe that if X is the zero matrix, then Proposition 4.2 does not apply because Con-
dition (2) is not satisfied, but by going back to Version (V3), we easily see that there is a
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unique solution. In fact, we see immediately that w = 0 and b = (1>my)/m = y. Also, all the
Lagrange multiplers are equal to τ/2.

A sufficient condition for (1) is that rank(X) < rank(X̃), namely that 1m is not a
linear combination of the columns of X. A sufficient condition for (2) is that the families
((−1)skXk)k∈K are affinely independent. Most “real” data sets X satisfy this condition
unless they are pathological.

5 The Space of Minimal Solutions for lasso

This situation in Examples 3.1, 3.2, 3.3 3.4, and 3.5 generalizes to the minimal solutions
associated with any pair of sets K+ and K−.

For any d with 2 ≤ d ≤ n, for any sequence s = (s1, . . . , sd) with si = 0 or si = 1, let Os

be the polyhedral cone in Rd, called the s-orthant , defined by the inequalities{
δi ≥ 0 if si = 0

δi ≤ 0 if si = 1.

These can be written concisely as

(−1)siδi ≥ 0, 1 ≤ i ≤ d.

There are 2d s-orthants.

We also have the hyperplanes Hs and Hs,µ in Rd given by the equations

(−1)s1δ1 + · · ·+ (−1)sdδd = 0.

and
(−1)s1δ1 + · · ·+ (−1)sdδd = µ,

with µ > 0. Earlier we used the notations HK+,K− and HK+,K− , µ but the notations Hs and
Hs,µ are more concise.

The intersection ∆s,µ
d−1 = Hs,µ ∩Os of Hs,µ and Os is the convex set defined by the affine

constraints

(−1)s1δ1 + · · ·+ (−1)sdδd = µ

(−1)siδi ≥ 0 1 ≤ i ≤ d.

Using the change of variable zi = (−1)siδi, we see that ∆s,µ
d−1 is the (d − 1)-simplex whose

vertices are the d points (0, . . . , 0, (−1)siµ, 0, . . . , 0), with (−1)siµ in the ith slot.

To deal with the case where vectors

(
δ
η

)
in Ker X̃ have a nonzero η component, we also

define the polyhedral cylinder C∆s,µ
d−1 ⊆ Rd+1 above the simplex ∆s,µ

d−1 as

C∆s,µ
d−1 = {(δ, η) ∈ Rd+1 | δ ∈ ∆s,µ

d−1, η ∈ R}.
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The cylinder C∆s,µ
d−1 ⊆ Rd+1 has dimension d. Observe that

C∆s,µ
d−1 = ∆s,µ

d−1 × R = (Hs,µ × R) ∩ (Os × R).

Proposition 5.1. Let K0, K+ and K− be the subsets given by

K0 = {i ∈ {1, . . . , n} | 0 < (α+)i < τ}
K+ = {i ∈ {1, . . . , n} | (α+)i = τ}
K− = {i ∈ {1, . . . , n} | (α+)i = 0}

uniquely associated with all minimal solutions of an instance of lasso, let d = n− |K0| ≥ 2,
and let s be the sequence in which si = 0 if i ∈ K+, and si = 1 if i ∈ K−. Also let (w1, b1)
be any minimal solution and let

µ = ‖w1‖1 =
d∑

i∈K+∪K−

(−1)si(w1)i

(with µ > 0), the minimal value of the 1-norm of all minimal solutions. Let (Ker X̃)K+,K−

be the subspace of Rd+1 consisting of all vectors (δi∈K+∪K− , η) such that (δ, η) ∈ Ker X̃ and
δi = 0 if i ∈ K0, or equivalently

(1) δi = 0 if i ∈ K0.

(2)
∑

i∈K+∪K−
δiX

i + η1m = 0.

The subspace (Ker X̃)K+,K− is the projection onto Rd+1 of the subspace of Ker X̃ consisting

of the vectors (δ, η) ∈ Ker X̃ such that δi = 0 if i ∈ K0. The affine subspace (w1, b1) +

(Ker X̃)K+,K− has dimension at most n + 1 − r where r is the rank of X̃, and is not par-
allel to the η-axis. Then the space of minimal solution is the intersection of the polyhedral
cylinder C∆s,µ

d−1 with the affine subspace (w1, b1) + (Ker X̃)K+,K−. It is a polytope (a bounded
polyhedron) of dimension at most d− 1.

Proof. Let (w2, b2) be any minimal solution and let (δ, η) = (w2 − w1, b2 − b1). The classifi-
cation implies that {

δi ≥ −(w1)i, (w1)i ≥ 0 if si = 0

δi ≤ −(w1)i, (w1)i ≤ 0 if si = 1.

Observe that this convex set is the translate Os−w1 of the s-orthant Os. Then by Proposition
3.4, the vector (δi∈K+∪K− , η) ∈ Rd+1 must belong to the intersection of the convex sets

(1) The kernel subspace (Ker X̃)K+,K− .

(2) The hyperplane Hs × R in Rd+1, where Hs is given by the equation∑
i∈K+∪K−

(−1)siδi = 0,

since η is not yet constrained.
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(3) The polyhedral cylinder (Os − w1)× R, since η is not yet constrained.

But then the minimal solution (w2, b2) = (w1, b1) + (δ, η) belongs to the intersection of
the convex sets

(1) The affine subspace (w1, b1) + (Ker X̃)K+,K− .

(2) The translate (w1, b1) + (Hs × R), which is the affine hyperplane Hs,µ × R in Rd+1,
where Hs,µ is given by the equation∑

i∈K+∪K−

(−1)siδi = µ,

since η is not yet constrained.

(3) The polyhedral cylinder (w1, b1) + ((Os − w1) × R) = Os × R, since η is not yet
constrained.

Since (Ker X̃)K+,K− is the projection of a subspace of Ker X̃, which has dimension n+1−r
where r is the rank of X̃, it has dimension at most n+1−r. Since the vectors in (Ker X̃)K+,K−

satisfy the equation ∑
i∈K+∪K−

δiX
i + η1m = 0,

the m equations with scalar coefficients corresponding to the above system all have 1 as the
coefficient of η, which means that the vectors normal to these hyperplanes are not orthogonal
to the η-axis which is the line spanned by the vector (0, . . . , 0, 1) ∈ Rd+1. Therefore none
of the hyperplanes defined by these equations are parallel to the η-axis, and so the affine
subspace (w1, b1) + (Ker X̃)K+,K− is not parallel to the η-axis.

The intersection of the two convex sets Hs,µ × R and Os × R is the polyhedral cylinder
C∆s,µ

d−1. Therefore the minimal solution (w2, b2) belongs to the convex set which is the inter-

section of the polyhedral cylinder C∆s,µ
d−1 with the affine subspace (w1, b1) + (Ker X̃)K+,K− .

Because the affine subspace (w1, b1)+(Ker X̃)K+,K− is not parallel to the η-axis, we claim
that it intersects the polyhedral cylinder C∆s,µ

d−1 in a bounded set, which is a polytope.

We prove this fact as follows. A hyperplane in Rd+1 not parallel to the η-axis (the
xd+1-axis) has an equation of the form

a1x1 + · · ·+ adxd + η = c.

The boundary of the polyhedral cylinder C∆s,µ
d−1 consists of the lines parallel to the η-axis

passing though the boundary of the simplex ∆s,µ
d−1 and consists of faces whose boundaries

are the lines parallel to the η-axis passing though the d vertices of the simplex ∆s,µ
d−1. The

intersection the vertical line passing though (0, . . . , 0, (−1)siµ, 0, . . . , 0, 0) with (−1)siµ in the
ith slot (1 ≤ i ≤ d) and the hyperplane

a1x1 + · · ·+ adxd + η = c
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has η-coordinate given by
ηi = c− (−1)siaiµ.

The d points (0, . . . , 0, (−1)siµ, 0, . . . , 0, c− (−1)siaiµ) are obviously all distinct, so there is
a unique bijective affine map sending the simplex ∆s,µ

d−1 to the intersection of the polyhedral
cylinder C∆s,µ

d−1 with the hyperplane

a1x1 + · · ·+ adxd + η = c,

so this intersection is a simplex. Since any affine subspace is the intersection of affine
hyperplanes, by intersecting the previous simplex with more affine hyperplanes we obtain a
polytope.

Finally, by construction, any vector (w, b) in the intersection of the polyhedral cylinder

C∆s,µ
d−1 with the affine subspace (w1, b1) + (Ker X̃)K+,K− has the same minimal norm µ as

the minimal solution (w1, b1) and satisfies all the KKT conditions, so it is also a minimal
solution.

Observe that if all the minimal solutions have the same b-component, which is the case
if 1m is not a linear combinations of the columns of X, then the space of minimal solutions
is a polytope obtained by intersecting the simplex ∆s,µ

d−1 with some affine subspace.

In conclusion, note that for every polytope P , there is an affine bijection between P and
the intersection of a simplex with some affine space (Ziegler [9], Exercise 2.2). Indeed, if P
is a polytope in Rn, it is defined as the bounded polyhedron which is the intersection of m
half spaces, so it is defined as the set of solutions of a system of inequalities of the form

Ax ≤ b.

Since P is bounded, each variable xi is bounded below (and above) so by some suitable
translation we may also assume that xi ≥ 0 for i = 1, . . . , n. Using slack variables y1, . . . , ym,
we have the polytope Q in Rn+m defined by

(
A Im

)(x
y

)
− b = 0

x, y ≥ 0.

We check immediately that the map x 7→ (x, b−Ax) from Rn to Rn+m is an afffine bijection
between P and Q. The convex set Q specified by the above system is the intersection of the
positive orthant in Rn+m with the affine subspace specified by the above system of equations.
But because P is bounded, Q is also bounded, so we can find a (n + m)-simplex in Rn+m

in the positive orthant that contains Q, and then Q is the intersection of a simplex with an
affine subspace.
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6 An Attempt Using Pseudo-Inverses

We now investigate how to use the pseudo-inverse of B to find minimal solutions in lasso
when B has rank r less than n + 1. Since B is symmetric positive semi-definite, it can be
diagonalized as B = QΣQ>, where Q is an orthogonal matrix and Σ is a diagonal matrix of
the form

Σ =

(
Σr 0r,n+1−r

0n+1−r,r 0n+1−r,n+1−r

)
,

where Σr is a diagonal matrix with positive entries (the strictly positive eigenvalues of B).
Our goal is to solve Equation (eq4) from Section 2 assuming that α+ and α− are known,
namely

B

(
w
b

)
= B1

(
α+

α−

)
+B2.

If we write

C = B1

(
α+

α−

)
+B2,

then we have the system

Q

(
Σr 0
0 0

)
Q>
(
w
b

)
= C,

and so (
Σr 0
0 0

)
Q>
(
w
b

)
= Q>C.

If we define the new variable z1 ranging over Rr and z2 ranging over Rn+1−r,(
z1
z2

)
= Q>

(
w
b

)
,

then we have (
Σr 0
0 0

)(
z1
z2

)
= Q>C,

which implies that (
Σrz1

0n+1−r,1

)
= Q>C.

Therefore Q>C must be of the form

Q>C =

(
c

0n+1−r,1

)
for some c ∈ Rr, so we obtain

z1 = Σ−1r c,
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and z2 ∈ Rn+1−r is arbitrary. Since (
z1
z2

)
= Q>

(
w
b

)
,

the general solution is given by(
w
b

)
= Q

(
z1
z2

)
= Q

(
Σ−1r c

0n+1−r,1

)
+Q

(
0r,1
z2

)
= Q

(
Σ−1r 0

0 0

)(
c

0n+1−r,1

)
+Q

(
0r,1
z2

)
= Q

(
Σ−1r 0

0 0

)
Q>C +Q

(
0r,1
z2

)
.

We recognize the pseudo-inverse B+ of B given by

B+ = Q

(
Σ−1r 0

0 0

)
Q>,

so the general solution is given by(
w
b

)
= B+C +Q

(
0r,1
z2

)
= B+B1

(
α+

α−

)
+B+B2 +Q

(
0r,1
z2

)
,

namely (
w
b

)
= B+

(
−α+ + α−

0

)
+B+B2 +Q

(
0r,1
z2

)
.

Given a minimal solution (w1, b1), say given by running ADMM on the primal problem,
we can compute α+ and α− using the formulae of Proposition 3.2. We did this in a Matlab

program. Then we can compute(
w2

b2

)
= B+

(
−α+ + α−

0

)
+B+B2

using the pseudo-inverse B+. If the signs of the components of w2 satisfy the conditions of
Proposition 3.3, then every time we ran our program we found that (w2, b2) is also a minimal
solution, and in particular, ‖w2‖1 = ‖w1‖1. However we have no explanation for this fact.
If the signs of the components of w2 do not satisfy the conditions of Proposition 3.3, then
(w2, b2) is not a minimal solution. We observed this behavior in Examples 3.3 and 3.4. If in
Case (4) of Example 3.5 we replace Xb2 by

Xb3 = [20, -18; 6.1, 5; 2.2, 4; 0, 0; 4, 1.9; 1, -5; 6.2, -8; 4.1, -6];

then the solution computed using the pseudo-inverse is also wrong.
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7 Filling in the Missing Steps

The missing steps that we mentioned in Section 1 are worked out as follows.

(1) We have

J2(w, b) = ξ>ξ +Kw>w = (w>X> + b1>m − y>)(Xw + b1m − y) +Kw>w

= w>X>Xw + w>X>1mb− w>X>y
+ b1>mXw + b21>m1m − b1>my
− y>Xw − by>1m + y>y +Kw>w

= w>(X>X +KIn)w + 2w>X>1mb− 2w>X>y − 2b1>my

+ b21>m1m + y>y.

We can rewrite the above expression in matrix form (using the fact that 1>m1m = m) as

J2(w, b) =
(
w> b

)(X>X +KIn X>1m
1>mX m

)(
w
b

)
− 2

(
w> b

)(X>y
1>my

)
+ y>y.

(2) The issue now is to prove that the matrix

B =

(
X>X +KIn X>1m

1>mX m

)
is symmetric positive definite. Since m > 0 and X>X + KIn is symmetric positive definite
we can use Schur complements (Gallier and Qaintance [6], Proposition 7.3) to prove that B
is symmetric positive definite. The Schur complement of m is

S = X>X +KIn −m−1X>1m1>mX,

and the Schur complement of X>X +KIn is

T = m− 1>mX(X>X +KIn)−1X>1m = 1>m(Im −X(X>X +KIn)−1X>)1m. (T )

But
(X>X +KIn)−1X> = X>(XX> +KIm)−1,

so
T = 1>m(Im −XX>(XX> +KIm)−1)1m.

Then

Im −XX>(XX> +KIm)−1 = (XX> +KIm)(XX> +KIm)−1 −XX>(XX> +KIm)−1

= K(XX> +KIm)−1,

which is SPD, since XX> +KIm is SPD, so

T = 1>mK(XX> +KIm)−11m > 0. (∗T )
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Since X>X +KIn is SPD and T > 0, by Proposition 7.3, B is also SPD.

Here is another proof not using the Schur complement. Let g be the function given by

g(w, b) =
(
w> b

)(X>X +KIn X>1m
1>mX m

)(
w
b

)
= w>(X>X +KIn)w + 2w>X>1mb+ 1>m1mb

2.

We need to prove that if (w, b) 6= 0, then g(w, b) > 0. If (w, b) 6= 0 and b = 0, then w 6= 0,
and in this case g(w, 0) = w>(X>X +KIn)w > 0, since X>X +KIn is SPD.

Let us now assume that b 6= 0. For b fixed, the function w 7→ g(w, b) is strictly convex
because X>X + KIn is SPD, so it has a unique minimum obtained by setting the gradient
∇wg to 0; see Gallier and Qaintance [6], Theorem 4.13(4)). This yields

2(X>X +KIn)w + 2X>1mb = 0,

and we obtain
w∗ = −(X>X +KIn)−1X>1mb.

The minimum of g with respect to w is obtained by substituting the above value of w into
g and we get

g(w∗, b) = b1>mX(X>X +KIn)−1X>1mb− 2b1>mX(X>X +KIn)−1X>1mb+ 1>m1mb
2

= (1>m1m − 1>mX(X>X +KIn)−1X>1m)b2

= 1>m(Im −X(X>X +KIn)−1X>)1mb
2 = Tb2,

where T is defined in (T ). We proved above in (∗T ) that

T = 1>m(Im −X(X>X +KIn)−1X>)1m = 1>mK(XX> +KIm)−11m > 0.

Consequently, if b 6= 0, we see that g(w, b) ≥ g(w∗, b) = Tb2 > 0, which shows that B is
SPD. In summary, we proved that if (w, b) 6= 0, then g(w, b) > 0, which means that B is
SPD.

Since the matrix

B =

(
X>X +KIn X>1m

1>mX m

)
is symmetric positive definite, the function J2(w, b) has a unique minimum obtained by
setting its gradient to zero, which yields the system(

X>X +KIn X>1m
1>mX m

)(
w
b

)
=

(
X>y
1>my

)
. (∗1)
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