Chapter 10

$Q R$-Decomposition for Arbitrary Matrices

10.1 Orthogonal Reflections

Orthogonal symmetries are a very important example of isometries. First let us review the definition of a (linear) projection.

Given a vector space E, let F and G be subspaces of E that form a direct sum $E=F \oplus G$.

Since every $u \in E$ can be written uniquely as $u=v+w$, where $v \in F$ and $w \in G$, we can define the two projections $p_{F}: E \rightarrow F$ and $p_{G}: E \rightarrow G$, such that

$$
p_{F}(u)=v \quad \text { and } \quad p_{G}(u)=w .
$$

It is immediately verified that p_{G} and p_{F} are linear maps, and that $p_{F}^{2}=p_{F}, p_{G}^{2}=p_{G}, p_{F} \circ p_{G}=p_{G} \circ p_{F}=0$, and $p_{F}+p_{G}=\mathrm{id}$.

Definition 10.1. Given a vector space E, for any two subspaces F and G that form a direct sum $E=F \oplus G$, the symmetry with respect to F and parallel to G, or reflection about F is the linear map $s: E \rightarrow E$, defined such that

$$
s(u)=2 p_{F}(u)-u
$$

for every $u \in E$.

Because $p_{F}+p_{G}=\mathrm{id}$, note that we also have

$$
s(u)=p_{F}(u)-p_{G}(u)
$$

and

$$
s(u)=u-2 p_{G}(u)
$$

$s^{2}=\mathrm{id}, s$ is the identity on F, and $s=-\mathrm{id}$ on G.

We now assume that E is a Euclidean space of finite dimension.

Definition 10.2. Let E be a Euclidean space of finite dimension n. For any two subspaces F and G, if F and G form a direct sum $E=F \oplus G$ and F and G are orthogonal, i.e. $F=G^{\perp}$, the orthogonal symmetry with respect to F and parallel to G, or orthogonal reflection about F is the linear map $s: E \rightarrow E$, defined such that

$$
s(u)=2 p_{F}(u)-u
$$

for every $u \in E$.

When F is a hyperplane, we call s an hyperplane symmetry with respect to F or reflection about F, and when G is a plane, we call s a flip about F.

It is easy to show that s is an isometry.

Using Proposition 9.8, it is possible to find an orthonormal basis $\left(e_{1}, \ldots, e_{n}\right)$ of E consisting of an orthonormal basis of F and an orthonormal basis of G.

Assume that F has dimension p, so that G has dimension $n-p$.

With respect to the orthonormal basis $\left(e_{1}, \ldots, e_{n}\right)$, the symmetry s has a matrix of the form

$$
\left(\begin{array}{cc}
I_{p} & 0 \\
0 & -I_{n-p}
\end{array}\right)
$$

Thus, $\operatorname{det}(s)=(-1)^{n-p}$, and s is a rotation iff $n-p$ is even.

In particular, when F is a hyperplane H, we have $p=n-1$, and $n-p=1$, so that s is an improper orthogonal transformation.

When $F=\{0\}$, we have $s=-\mathrm{id}$, which is called the symmetry with respect to the origin. The symmetry with respect to the origin is a rotation iff n is even, and an improper orthogonal transformation iff n is odd.

When n is odd, we observe that every improper orthogonal transformation is the composition of a rotation with the symmetry with respect to the origin.

When G is a plane, $p=n-2$, and $\operatorname{det}(s)=(-1)^{2}=1$, so that a flip about F is a rotation.

In particular, when $n=3, F$ is a line, and a flip about the line F is indeed a rotation of measure π.

When $F=H$ is a hyperplane, we can give an explicit formula for $s(u)$ in terms of any nonnull vector w orthogonal to H.

We get

$$
s(u)=u-2 \frac{(u \cdot w)}{\|w\|^{2}} w
$$

Such reflections are represented by matrices called Householder matrices, and they play an important role in numerical matrix analysis. Householder matrices are symmetric and orthogonal.

Over an orthonormal basis $\left(e_{1}, \ldots, e_{n}\right)$, a hyperplane reflection about a hyperplane H orthogonal to a nonnull vector w is represented by the matrix

$$
H=I_{n}-2 \frac{W W^{\top}}{\|W\|^{2}}=I_{n}-2 \frac{W W^{\top}}{W^{\top} W}
$$

where W is the column vector of the coordinates of w.

Since

$$
p_{G}(u)=\frac{(u \cdot w)}{\|w\|^{2}} w
$$

the matrix representing p_{G} is

$$
\frac{W W^{\top}}{W^{\top} W},
$$

and since $p_{H}+p_{G}=\mathrm{id}$, the matrix representing p_{H} is

$$
I_{n}-\frac{W W^{\top}}{W^{\top} W}
$$

The following fact is the key to the proof that every isometry can be decomposed as a product of reflections.

Proposition 10.1. Let E be any nontrivial Euclidean space. For any two vectors $u, v \in E$, if $\|u\|=\|v\|$, then there is an hyperplane H such that the reflection s about H maps u to v, and if $u \neq v$, then this reflection is unique.

We now show that Hyperplane reflections can be used to obtain another proof of the $Q R$-decomposition.

10.2 $Q R$-Decomposition Using Householder Matrices

First, we state the result geometrically. When translated in terms of Householder matrices, we obtain the fact advertised earlier that every matrix (not necessarily invertible) has a $Q R$-decomposition.

Proposition 10.2. Let E be a nontrivial Euclidean space of dimension n. Given any orthonormal basis $\left(e_{1}, \ldots, e_{n}\right)$, for any n-tuple of vectors $\left(v_{1}, \ldots, v_{n}\right)$, there is a sequence of n isometries h_{1}, \ldots, h_{n}, such that h_{i} is a hyperplane reflection or the identity, and if $\left(r_{1}, \ldots, r_{n}\right)$ are the vectors given by

$$
r_{j}=h_{n} \circ \cdots \circ h_{2} \circ h_{1}\left(v_{j}\right),
$$

then every r_{j} is a linear combination of the vectors $\left(e_{1}, \ldots, e_{j}\right),(1 \leq j \leq n)$. Equivalently, the matrix R whose columns are the components of the r_{j} over the basis $\left(e_{1}, \ldots, e_{n}\right)$ is an upper triangular matrix. Furthermore, the h_{i} can be chosen so that the diagonal entries of R are nonnegative.

Remarks. (1) Since every h_{i} is a hyperplane reflection or the identity,

$$
\rho=h_{n} \circ \cdots \circ h_{2} \circ h_{1}
$$

is an isometry.
(2) If we allow negative diagonal entries in R, the last isometry h_{n} may be omitted.
(3) Instead of picking $r_{k, k}=\left\|u_{k}^{\prime \prime}\right\|$, which means that

$$
w_{k}=r_{k, k} e_{k}-u_{k}^{\prime \prime},
$$

where $1 \leq k \leq n$, it might be preferable to pick $r_{k, k}=-\left\|u_{k}^{\prime \prime}\right\|$ if this makes $\left\|w_{k}\right\|^{2}$ larger, in which case

$$
w_{k}=r_{k, k} e_{k}+u_{k}^{\prime \prime}
$$

Indeed, since the definition of h_{k} involves division by $\left\|w_{k}\right\|^{2}$, it is desirable to avoid division by very small numbers.

Proposition 10.2 immediately yields the $Q R$-decomposition in terms of Householder transformations.

Theorem 10.3. For every real $n \times n$-matrix A, there is a sequence H_{1}, \ldots, H_{n} of matrices, where each H_{i} is either a Householder matrix or the identity, and an upper triangular matrix R, such that

$$
R=H_{n} \cdots H_{2} H_{1} A
$$

As a corollary, there is a pair of matrices Q, R, where Q is orthogonal and R is upper triangular, such that $A=Q R$ (a $Q R$-decomposition of $A)$. Furthermore, R can be chosen so that its diagonal entries are nonnegative.

Remarks. (1) Letting

$$
A_{k+1}=H_{k} \cdots H_{2} H_{1} A
$$

with $A_{1}=A, 1 \leq k \leq n$, the proof of Proposition 10.2 can be interpreted in terms of the computation of the sequence of matrices $A_{1}, \ldots, A_{n+1}=R$.

The matrix A_{k+1} has the shape

$$
A_{k+1}=\left(\begin{array}{cccccccc}
\times & \times & \times & u_{1}^{k+1} & \times & \times & \times & \times \\
0 & \times & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \times & u_{k}^{k+1} & \times & \times & \times & \times \\
0 & 0 & 0 & u_{k+1}^{k+1} & \times & \times & \times & \times \\
0 & 0 & 0 & u_{k+2}^{k+1} & \times & \times & \times & \times \\
\vdots & \vdots \\
0 & 0 & 0 & u_{n-1}^{k+1} & \times & \times & \times & \times \\
0 & 0 & 0 & u_{n}^{k+1} & \times & \times & \times & \times
\end{array}\right)
$$

where the $(k+1)$ th column of the matrix is the vector

$$
u_{k+1}=h_{k} \circ \cdots \circ h_{2} \circ h_{1}\left(v_{k+1}\right)
$$

and thus

$$
u_{k+1}^{\prime}=\left(u_{1}^{k+1}, \ldots, u_{k}^{k+1}\right)
$$

and

$$
u_{k+1}^{\prime \prime}=\left(u_{k+1}^{k+1}, u_{k+2}^{k+1}, \ldots, u_{n}^{k+1}\right)
$$

If the last $n-k-1$ entries in column $k+1$ are all zero, there is nothing to do and we let $H_{k+1}=I$.

Otherwise, we kill these $n-k-1$ entries by multiplying A_{k+1} on the left by the Householder matrix H_{k+1} sending $\left(0, \ldots, 0, u_{k+1}^{k+1}, \ldots, u_{n}^{k+1}\right)$ to $\left(0, \ldots, 0, r_{k+1, k+1}, 0, \ldots, 0\right)$, where

$$
r_{k+1, k+1}=\left\|\left(u_{k+1}^{k+1}, \ldots, u_{n}^{k+1}\right)\right\|
$$

(2) If we allow negative diagonal entries in R, the matrix H_{n} may be omitted $\left(H_{n}=I\right)$.
(3) If A is invertible and the diagonal entries of R are positive, it can be shown that Q and R are unique.
(4) The method allows the computation of the determinant of A. We have

$$
\operatorname{det}(A)=(-1)^{m} r_{1,1} \cdots r_{n, n}
$$

where m is the number of Householder matrices (not the identity) among the H_{i}.
(5) The condition number of the matrix A is preserved. This is very good for numerical stability.

