Chapter 11

Variational Approximation of
Boundary-Value Problems;
Introduction to the Finite Elements
Method

11.1 A One-Dimensional Problem: Bending of a Beam

Consider a beam of unit length supported at its ends in 0
and 1, stretched along its axis by a force P, and subjected
to a transverse load f(z)dx per element dx, as illustrated
in Figure 11.1.

0 dx 1
B N%—/A F
f(x)dz

Figure 11.1: Vertical deflection of a beam
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The bending moment u(x) at the absissa x is the solution
of a boundary problem (BP) of the form

—u"(z) + c(z)u(z) = f(z), O<z<1

where ¢(x) = P/(EI(x)), where E is the Young’s mod-
ulus of the material of which the beam is made and I(x)
is the principal moment of inertia of the cross-section of
the beam at the abcissa x, and with aa = 8 = 0.

Remark: The vertical deflection w(x) of the beam and
the bending moment u(z) are related by the equation
d*w

= —F[——.
u(x) T3
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For this problem, we may assume that c¢(x) > 0 for all
z € [0,1].

If we seek a solution u € C?([0,1]), that is, a function
whose first and second derivatives exist and are continu-
ous, then it can be shown that the problem has a unique
solution (assuming ¢ and f to be continuous functions on

0, 1]).

Except in very rare situations, this problem has no closed-
form solution, so we are led to seek approximations of the
solutions.
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One one way to proceed is to use the finite difference
method, where we discretize the problem and replace
derivatives by differences.

Another way is to use a variational approach.

In this approach, we follow a somewhat surprising path
in which we come up with a so-called “weak formulation”
of the problem, by using a trick based on integrating by
parts!

First, let us observe that we can always assume that
a = 3 =0, by looking for a solution of the form
u(z) — (a(l —x) + Bx).

This turns out to be crucial when we integrate by parts.
There are a lot of subtle mathematical details involved
to make what follows rigorous, but we here, we will take

a ‘relaxed” approach.

First, we need to specity the space of “weak solutions.”
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This will be the vector space V' of continuous functions f
on [0, 1], with f(0) = f(1) = 0, and which are piecewise
continuously differentiable on [0, 1].

This means that there is a finite number of points x, . . .,
Ty with xg = 0 and xy1 = 1, such that f'(x;) is un-
defined for i = 1,..., N, but otherwise f’is defined and
continuous on each interval (z;, x;11) fori=0,..., N.

The space V' becomes a Euclidean vector space under the
inner product

(. )y = / (F(2)9(2) + ' (2)g (2))da,

for all f,g € V. The associated norm is

1/2

IFlly = (/01<f(fﬂ)2 + f’(w>2>dl‘>
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Assume that u is a solution of our original boundary prob-
lem (BP), so that

Multiply the differential equation by any arbitrary test
function v € V| obtaining

—d(2)o() + cla)u(z)o(z) = flala),  (x)

and integrate this equation! We get
1 1
— / u"(z)v(x)dw +/ c(z)u(z)v(x)dx
0 0 1
- [ fapt@ds. 5

Now, the trick is to use integration by parts on the first
term.
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Recall that
(u’v)' — v+ u//(}/)

and to be careful about discontinuities, write

/O M @)o(a)de = zNg / 1 () (x)da.

Using integration by parts, we have

/:Hl v (z)v(x)dx
_ / " @)ole)d — / ) (2)da

~ W@l - [ e

i

— @i)olei) — W) — [ w@ @

1
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[t follows that

/01 v (z)v(x)dx

N

_ z; / 1 () () de =
ENI (u’<xi+l>v<azi+l> — ol (2)o(x;) - / uf<x>vf<x>dx)

1=0

However, the test function v satisfies the boundary con-
ditions v(0) = v(1) = 0 (recall that v € V), so we get

/01 u(x)v(z)dr = — /01 u'(z)v'(x)dx.
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Consequently, the equation (1) becomes

1 1
/ (u'v" + cuv)dx = / fodz, forallve V. (xx)
0 0

Thus, it is natural to introduce the bilinear form
a:V xV — R given by

1
a(u,v) = / (u'v + cuv)dz, for all u,v € V,
0

and the linear form f: V — R given by
B 1
fv) = / f(x)v(z)dx, foralveV.
0

Then, (*x) becomes

~

a(u,v) = f(v), forallveV.
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We also introduce the energy function J given by

ﬂ@:%@um—f@)vev<

Theorem 11.1. Let u be any solution of the boundary
problem (BP).

(1) Then we have
a(u,v) = f(v), forallveV, (WF)
where
1
a(u,v) = / (u'v" + cuv)dz,  for all u,v € V,
0

a

nd ) 1
f(v) = / f(x)v(z)dx, forallveV.
0

(2) If ¢(x) > 0 for all x € |0,1], then a functionu € V
is a solution of (WF) iff u minimizes J(v), that is,
J(u) = inf J(v),
veV
with 1
ﬂ@zf@@—ﬂ@t@V

Furthermore, u s unique.
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Theorem 11.1 shows that every solution u of our bound-
ary problem (BP) is a solution (in fact, unique) of the
equation (WF).

The equation (WF) is called the weak form or wvaria-
tional equation associated with the boundary problem.

This idea to derive these equations is due to Ritz and

Galerkin.

Now, the natural question is whether the variational equa-
tion (WF) has a solution, and whether this solution, if it
exists, is also a solution of the boundary problem (it must
belong to C*([0,1]), which is far from obvious). Then,
(BP) and (WF) would be equivalent.

Some fancy tools of analysis can be used to prove these
assertions.

The first difficulty is that the vector space V' is not the
right space of solutions, because in order for the varia-
tional problem to have a solution, it must be complete.
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So, we must construct a completion of the vector space

V.

This can be done and we get the Sobolev space H3(0,1).
Then, the question of the regularity of the “weak solu-
tion” can also be tackled.

We will not worry about all this. Instead, let us find
approximations of the problem (WF).

Instead of using the infinite-dimensional vector space V/,
we consider finite-dimensional subspaces V,, (with
dim(V,) = n) of V., and we consider the discrete prob-
lem:

Find a function v\ € V,, such that

~

a(u'¥ v) = f(v), forallv eV, (DWF)
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Since V, is finite dimensional (of dimension n), let us pick
a basis of functions (wr,...,w,) in V,, so that every
function u € V, can we written as

U= UIW1 + * -+ + UpWy,.

Then, the equation (DWF) holds iff

~

a(u,wj) = f(w;), j=1,...,n,

and by plugging ujwy + - - - +u,w, for u, we get a system
of k£ linear equations

n

Za(wi, wW;)u; = f(’wj), 1<j<n.
i=1
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Because a(v,v) > %HUHVG, the bilinear form a is sym-
metric positive definite, and thus the matriz (a(w;, w;))
15 symmetric positive definite, and thus invertible.

Therefore, (DWF) has a solution given by a linear sys-
tem/!

From a practical point of view, we have to compute the
integrals

1
aij = a(w;, w;) = / (wiw) + cwyw;)de,
0
and
_ 1
by = Fw) = [ fpuy(e)ds
0

However, if the basis functions are simple enough, this
can be done “by hand.” Otherwise, numerical integration
methods must be used, but there are some good ones.
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Let us also remark that the proof of Theorem 11.1 also
shows that the unique solution of (DWF) is the unique
minimizer of J over all functions in V/,.

It is also possible to compare the approximate solution
u'® € V, with the exact solution v € V.

Theorem 11.2. Suppose c(x) > 0 for all x € |0, 1].
For every finite-dimensional subspace V,

(dim(V,) =n) of V', for every basis (wy, ..., wy,) of Vy,
the following properties hold:

(1) There is a unique function u'® €V, such that

~

a(u'®,v) = f(v), for all v eV, (DWF)

and if u' = wywi+- - Fuyw,, thenu = (ug, . .., uy,)
s the solution of the linear system

Au = b, (%)

~

with A = (a;;) = (a(w;, w;)) and b; = f(w;),
1 <4,5 <n. Furthermore, the matriz A = (a;;) s
symmeltric positive definite.
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(2) The unique solution u'* € V, of (DWF) is the
unique minimazer of J over V,, that is,

J(u') = inf J(v),

veV,

(3) There is a constant C independent of V, and of
the unique solution uw € V of (WF), such that

< C inf |lu— :
< Cnf Ju—vly

ot

Let us now give examples of the subspaces V, used in
practice. They usually consist of piecewise polynomial
functions.

Pick an integer N > 1 and subdivide [0, 1] into N + 1
intervals [z;, x;11], where

1
i=hi, h=—— i=0,....N+1.
T 1 N1 1 +
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We will use the following fact: every polynomial P(z) of
degree 2m + 1 (m > 0) is completely determined by its
values as well as the values of its first m derivatives at
two distinct points «, 8 € R.

There are various ways to prove this.
One way is to use the Bernstein basis, because the kth
derivative of a polynomial is given by a formula in terms

of its control points.

For example, for m = 1, every degree 3 polynomial can
be written as

P(z) = (1—2) by +3(1 —2)%x by +3(1 — 2)2* by + 2° b3,

with by, b1, by, b3 € R, and we showed that

P'(0
P(1)

3(by — by)
3(by — by).

Given P(0) and P(1), we determine by and b3, and from
P'(0) and P’(1), we determine by and bs.
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In general, for a polynomial of degree m written as
P(z)=> bB}(x)
§=0

in terms of the Bernstein basis (BJ'(x), ..., B]'(x)) with

Bri) = (7)1 - oy

J

it can be shown that the kth derivative of P at zero is
given by

and there is a similar formula for P*)(1).
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Actually, we need to use the Bernstein basis of polynomi-
als B'|r, s|, where

i =(5) (:5) 7 (55)'

with r < s, in which case

et (g ()

1=0

with a similar formula for P*)(1). In our case, we set
r=x;,8 = Tjy1.

Now, if the 2m + 2 values

are given, we obtain a triangular system that determines
uniquely the 2m + 2 control points by, . . ., bopii.



280 CHAPTER 11. INTRODUCTION TO THE FINITE ELEMENTS

Recall that C™(|0, 1]) denotes the set of C™ functions f
on [0, 1], which means that f, f1), ..., f") exist are are
continuous on |0, 1].

We define the vector space V" as the subspace of C"™(|0, 1])
consisting of all functions f such that

L F(0) = f(1) =0
2. The restriction of f to [x;, x;11] is a polynomial of
degree 2m + 1, for . =0,..., N.

Observe that the functions in V) are the piecewise affine
functions f with f(0) = f(1) = 0; an example is shown
in Figure 11.2.
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0 vh 1

Figure 11.2: A piecewise affine function

This space has dimension [V, and a basis consists of the
“hat functions” w;, where the only two nonflat parts of
the graph of w; are the line segments from (x;_1,0) to
(x;,1), and from (x;,1) to (z;21,0), fori =1,..., N, see
Figure 11.3.

The basis functions w; have a small support, which is
good because in computing the integrals giving a(w;, w;),
we find that we get a tridiagonal matrix.
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(i —Dh ih (i+1)h

Figure 11.3: A basis “hat function”
They also have the nice property that every function
v € V has the following expression on the basis (w;):

N

v(z) =Y v(ihwi(z), = €[0,1].

1=1

In general, it it not hard to see that V' has dimension
mN + 2(m — 1).
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Going back to our problem (the bending of a beam), as-
suming that ¢ and f are constant functions, it is not hard
to show that the linear system (%) becomes

Au = b,
with
A:
(2+%h2 —1+ th? \
1 —1+Eh* 24 Xh7 —14Sh?
- . .
—1+£h? 24+ %R —14Eh?
\ —1+gh22+%h2)
and
(1)
/
b=~h]| :
/

\/)
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We can also find a basis of 2N + 2 cubic functions for Vy
consisting of functions with small support.

This basis consists of the NV functions w! and of the N +2
functions w} uniquely determined by the following con-
ditions:

(W) (z;) =0, 0<j<N+1
1
w;

()
()
(z;) =0, 1<j<N
()
J

Some of these functions are displayed in Figure 11.4.
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Y
0
w;
1 1 1
Yo w; WN 1
K x
0 ih Jh 1

Figure 11.4: The basis functions w) and w;

For every function v € V., we have

N+1

v(z) = Z v(ih)w(z) + Y V' (jh)wj(z), = €[0,1].

1=1 7=0
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If we order these basis functions as

1 0 1 0 1 0 1 1
Wy, Wy, Wy, Wo, Wy, ..., Wy, Wn, Wy,

we find that if ¢ = 0, the matrix A of the system (x) is
tridiagonal by blocks, where the blocks are 2 x 2, 2 x 1,
or 1 x 2 matrices, and with single entries in the top left
and bottom right corner.

A different order of the basis vectors would mess up the
tridiagonal block structure of A. We leave the details as
an exercise.
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11.2 A Two-Dimensional Problem: An Elastic
Membrane

Consider an elastic membrane attached to a round con-
tour whose projection on the (z1, x5)-plane is the bound-
ary I' of an open, connected, bounded region {2 in the
(x1, x2)-plane, as illustrated in Figure 11.5.

)

X1 Y r

Figure 11.5: An elastic membrane
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In other words, we view the membrane as a surface con-
sisting of the set of points (x, z) given by an equation of
the form

z = u(x),

with o = (21, 22) € Q, where u: Q — R is some suf-
ficiently regular function, and we think of u(x) as the
vertical displacement of this membrane.

We assume that this membrane is under the action of a
vertical force 7 f(x)dx per surface element in the horizon-
tal plane (where 7 is the tension of the membrane).
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The problem is to find the vertical displacement u as a
function of z, for x € €.

[t can be shown (under some assumptions on €2, I', and
f), that u(x) is given by a PDE with boundary condition,
of the form

—Au(z) = f(z), =€
u(x) =g(x), xel,

where g: I' — R represents the height of the contour of
the membrane.

We are looking for a function u in C?(2) N C1(€2).

The operator A is the Laplacian, and it is given by

0*u 0*u

Au(z) = (9—33%@:) + (9—:133<x>
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This is an example of a boundary problem, since the
solution u of the PDE must satisty the condition
u(x) = g(x) on the boundary of the domain ).

The above equation is known as Poisson’s equation, and
when f = 0 as Laplace’s equation.

[t can be proved that if the data f, g and " are sufficiently
smooth, then the problem has a unique solution.

To get a weak formulation of the problem, first we have to
make the boundary condition homogeneous, which means
that g(x) =0 on I

[t turns out that g can be extended to the whole of Q as
some sufficiently smooth function A, so we can look tor
a solution of the form u — A, but for simplicity, let us
assume that the contour of €2 lies in a plane parallel to
the (x1, x2)- plane, so that g = 0.
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We let V' be the subspace of C?(Q) N C(Q) consisting of
functions v such that v =0 on I'.

As before, we multiply the PDE by a test functionv € V,
getting

—Au(z)v(z) = f(z)v(z),
and we “integrate by parts.”

In this case, this means that we use a version of Stokes
formula known as Green’s first identity, which says that

/ —Auvdr = /(grad u)-(grad v) daz—/(grad u)-nvdo
0 0

r

(where n denotes the outward pointing unit normal to
the surface).
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Because v = 0 on I', the integral fr drops out, and we
get an equation of the form

~

a(u,v) = f(v) forallv eV,

where a is the bilinear form given by

a<uv>_/ %ﬁJr%ﬁ q
R N N T Y

and fis the linear form given by
flv) = / fudzx.
QO

We get the same equation as in section 11.2, but over a
set of functions defined on a two-dimensional domain.
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As before, we can choose a finite-dimensional subspace
V, of V and consider the discrete problem with respect

to V.

Again, if we pick a basis (wy, ..., w,) of V,, a vector

U = ujwi + - - - + uyw, 1s a solution of the Weak Formu-
lation of our problem iff u = (uq, ..., u,) is a solution of
the linear system

Au = b,

~

with A = (a(w;, w;)) and b = (f(w;)).

However, the integrals that give the entries in A and b
are much more complicated.
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An approach to deal with this problem is the method of
finite elements.

The idea is to also discretize the boundary curve I.

If we assume that I' is a polygonal line, then we can
triangulate the domain €2, and then we consider spaces
of functions which are piecewise defined on the triangles
of the triangulation of €.

The simplest functions are piecewise affine and look like
tents erected above groups of triangles.

Again, we can define base functions with small support,
so that the matrix A is tridiagonal by blocks.

The finite element method is a vast subject and it is pre-
sented in many books of various degrees of difficulty and
obscurity.
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Let us simply state three important requirements of the
finite element method:

1. “Good” triangulations must be found. This in itself
is a vast research topic. Delaunay triangulations are
good candidates.

2. “Good” spaces of functions must be found; typically
piecewise polynomials and splines.

3. “Good” bases consisting of functions will small sup-
port must be found, so that integrals can be easily
computed and sparse banded matrices arise.

We now consider boundary problems where the solution
varies with time.
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11.3 Time-Dependent Boundary Problems: The Wave
Equation

Consider a homogeneous string (or rope) of constant cross-
section, of length L, and stretched (in a vertical plane)
between its two ends which are assumed to be fixed and
located along the z-axis at x =0 and at x = L.

Figure 11.6: A vibrating string

The string is subjected to a transverse force 7 f(x)dx per
clement of length dx (where 7 is the tension of the string).

We would like to investigate the small displacements of
the string in the vertical plane, that is, how it vibrates.

Thus, we seek a function u(x,t) defined for ¢ > 0 and
x € |0, L], such that u(x,t) represents the vertical defor-
mation of the string at the abscissa  and at time ¢.
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[t can be shown that w must satisty the following PDE

1 0%u 0%u
g@(;@t) — @(q;,t) = f(x,t), 0<x<L,t>0,

with ¢ = \/7/p, where p is the linear density of the
string, known as the one-dimensional wave equation.

Furthermore, the initial shape of the string is known at
t = 0, as well as the distribution of the initial velocities
along the string:

in other words, there are two functions u; o and w;; such
that

w(x,0) =up(x), 0<x <L,
0
a—?(iﬁ, 0) =wuii(z), 0<a< L.

For example, if the string is simply released from its given
starting position, we have u;; = 0.
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Lastly, because the ends of the string are fixed, we must
have

u(0,t) =u(L,t) =0, t>0.

Consequently, we look for a function u: Ry x [0, L] — R
satisfying the following conditions:

1 0%u 0%u
Ew(x,t) — @(x,t) = f(x,t), 0<x<L,t>0,
uw(0,t) =u(L,t) =0, t>
uw(z,0) =u;p(x), 0<uz

0
a_?@;, 0) =wu;1(x), 0<x <L (intitial condition).

0 (boundary condition),
< L (intitial condition),

This is an example of a time-dependent boundary-value
problem, with two nitial conditions.

To simplify the problem, assume that f = 0, which
amounts to neglecting the effect of gravity.
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In this case, our PDE becomes
1 9%u 0%

Let us try our trick of multiplying by a test function v
depending only on x, C! on [0, L], and such that
v(0) = v(L) = 0, and integrate by parts.

We get the equation

L 0% , [F 0%
0 82(:1:t)()d:1:—c 0 axQ(a:t)()dazzo.
For the first term, we get
L o%u Lo
0 @(x,t)v(az)daz =/ (9 —lulx, t)v(z)|dr
d2
=5 u(x, thv(x)dx
d2
= 2<u v),

where (u,v) is the inner product in L*([0, L]).
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The fact that it is legitimate to move 9°/0t* outside of
the integral needs to be justified rigorously, but we won'’t
do it here.

For the second term, we get

L o2 ou =L
- [ Gt tntadts = - [ Ghia i)
L ou dv

+ 0 %(56715)@(37)61:67

and because v € V, we have v(0) = v(L) = 0, so we
obtain

L o%u L ou dv
—/0 @(aj,t)v(a:)daz—/ %(x,t)%(x)d:p

0

Our integrated equation becomes

d? , [Fou dv
@W v) + ¢ 0 %(a:, t)%(az)daj =0,

forall ve V. andall t > 0.
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It is natural to introduce the bilinear forma: VxV — R
given by

L ou Ov

0 %(l’, t)%<$, t)dxa

a(u,v) =

where, for every t € R, the functions u(z,t) and (v, 1)
belong to V.

Actually, we have to replace V' by the subspace of the

Sobolev space Hi(0, L) consisting of the functions such
that v(0) = v(L) = 0.

Then, the weak formulation (variational formulation) of
our problem is this:

Find a function u € V such that

—(u,v) + a(u,v) =0, forall veV andall t >0
u(z,0) =u;p(x), 0<z <L (intitial condition),

—(2,0) =u;1(x), 0<ax <L (intitial condition).
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It can be shown that there is a positive constant o > 0
such that

a(u,u) > «a ||u||§{3 forall v e V

(Poincaré’s inequality), which shows that a is positive

definite on V.

The above method is known as the method of Rayleigh-
Ritz.

A study of the above equation requires some sophisticated
tools of analysis which go far beyond the scope of these

notes.

Let us just say that there is a countable sequence of so-
lutions with separated variables of the form

u(l)—sin /mr_:z: COS ket
ke L L )’

k kmct
u,(f):sin <%a;‘) sin( 720>, ke N,,

called modes (or normal modes).
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Complete solutions of the problem are series obtained by
combining the normal modes, and they are of the form

u

7N

x,t) =
. [ krx kmct . [ kmct
1sm (T) (Akcos( 7 ) +Bksm( 7 )) :

where the coefficients Aj, B; are determined from the
Fourier series of u; o and wu; ;.

WK

i

We now consider discrete approximations of our problem.
As before, consider a finite dimensional subspace V, of V'
and assume that we have approximations wu, o and u, ; of

Uj and Uj 1-

If we pick a basis (wy, ..., w,) of V,, then we can write
our unknown function u(x,t) as

w(x,t) = ui(t)wy + - - + up(t)w,y,

where uq, ..., u, are functions of ¢.
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Then, if we write u = (uq, ..., u,), the discrete version
of our problem is

d*u
AW —+ Ku = O,
w(x,0) =ugo(z), 0<ax <L,
0
8—?(:1:, 0) =ug1(x), 0<x<L,

where A = ((w;, w;)) and K = (a(w;, w;)) are two sym-
metric matrices, called the mass matriz and the stiffness
matrix, respectively.

In fact, because a and the inner product (—, —) are pos-
itive definite, these matrices are also positive definite.

We have made some progress since we now have a system
of ODE’s, and we can solve it by analogy with the scalar
case.
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So, we look for solutions of the form U cos wt (or U sin wt),
where U is an n-dimensional vector.

We find that we should have
(K — w?*A)U coswt = 0,
which implies that w must be a solution of the equation
KU = w’AU.
Thus, we have to find some A such that
KU = )\AU,

a problem known as a generalized eigenvalue problem,
since the ordinary eigenvalue problem for K is

KU = \U.
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Fortunately, because A is SPD, we can reduce this gener-
alized eigenvalue problem to a standard eigenvalue prob-
lem.

A good way to do so is to use a Cholesky decomposition

of A as
A=LL",
where L is a lower triangular matrix (see Theorem 2.10).

Because A is SPD, it is invertible, so L is also invertible,
and

KU =)MU=)LL'U

yields

L'KU=)L'U,

which can also be written as

LKLY 'L'U=)L"U.
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Then, if we make the change of variable
Y=L'U,
using the fact (L")~ = (L™!)", the equation
LKLY 'L'U=)L'U.
is equivalent to
LKL ™YH)'Y =)Y,

a standard eigenvalue problem for the matrix
K=L"'K({L™H"

Furthermore, we know from Section 2.3 that since K is
SPD and L~!is invertible, the matrix K = LK (L)'
is also SPD.
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Consequently;, K has positive real eigenvalues (wi, . . ., w?)

(not necessarily distinct) and it can be diagonalized with
respect to an orthonormal basis of eigenvectors, say

Y ..., Y™
Then, since Y = L' U, the vectors
U =LY, i=1,...,n,

are linearly independent and are solutions of the general-
ized eigenvalue problem: that is,

KU' =w’AU", i=1,...,n.

More is true. Because the vectors Y, ..., Y" are or-
thonormal, and because Y’ = L' U’, from

(Y)Y =4y,
we get

(UY'AU’ = 6,5, 1<i,5<n.
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This suggests defining the functions U’ € V, by
U'=) Uy
k=1
Then, it immediate to check that
&(Ui, U]) — (Ui)TAUj — 5¢j,

which means that the functions (U',...,U") form an
orthormal basis of V,, for the inner product a.

The functions U* € V, are called modes (or
modal vectors).
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As a final step, let us look again for a solution of our dis-
crete weak formulation of the problem, this time express-
ing the unknown solution u(x,t) over the modal basis

(UL, ..., U"), say
u=>Y (U,
j=1

where each ﬂj is a function of ¢.

[f we write u = (ui, ..., u,) with up = Y 0| u,(t) U7, for
k=1,...,n, wesee that

n
_ A7
u= g u; U7,
J=1

so using the fact that

KU =w/AU/, j=1,...,n,
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the equation

d*u
yields
> )" + wiu] AU = 0.
j=1
Since A is invertible and since (U, ..., U") are linearly
independent, the vectors (AU, ..., AU") are linearly

independent, and consequently we get the system of n

ODESs’
()" +wiu; =0, 1<j<n.

Each of these equation has a well-known solution of the
form

~

uj = Ajcosw;t + Bjsinw;t.
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Therefore, the solution of our approximation problem is
given by
n
U = Z(Aj cosw;t + Bjsinw;t)U,

J=1

and the constants A;, B; are obtained from the intial con-
ditions

u(z,0) = ugp(x), 0<x< L,

%(w,@) =ug1(zr), 0<z <L,

by expressing u, g and u, 1 on the modal basis (U, ..., U™).
Furthermore, the modal functions (U?, ..., U") form an
orthonormal basis of V| for the inner product a.
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If we use the vector space Vy of piecewise affine functions,
we find that the matrices A and K are familar!

Indeed,
(2 —1 0 0 o\
-1 2 -1 oo
A=—1 : . . .
hl o o -1 2 —1
Lo 0 0 -1 2/
and
41 0 00
h/14 1 oo\
K ==
5lo 0 1 41
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To conclude this section, let us discuss briefly the wave
equation for an elastic membrane, as described in Section

11.2.

This time, we look for a function u: R, x 2 — R satis-
fying the following conditions:

1 0%u
—zﬁ@f t) — Au(z,t) = f(z,t), ze€Q, t>0,
c
u(x,t) =0, xe€l, t>0 (boundary condition),
u(x,0) =u;o(x), x € (intitial condition),
ou

5 —(2,0) =u;1(x), x€Q (intitial condition).
Assuming that f = 0, we look for solutions in the sub-
space V' of the Sobolev space H} () consisting of func-
tions v such that v =0 on I'.
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Multiplying by a test function v € V' and using Green'’s
first identity, we get the weak formulation of our problem:

Find a function w € V such that

d2
T —{u,v) + a(u,v) =0, forall veV andall t >0
u(z,0) =u;o(x), x € (intitial condition),
E;;L(a;, 0) =wu;1(x), € (intitial condition),

where a: V' X V — R is the bilinear form given by

( )_/ 8u6v+0u6v g
a ) = 0 8561(9331 (3’562(9332 7

(u, v) :/quda?.

and
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As usual, we find approximations of our problem by using
finite dimensional subspaces V,, of V.

Picking some basis (wy, ..., w,) of V,, and triangulating
(), as before, we obtain the equation

d*u
u(z,0) =uso(x), zel,

9,
8—1‘@, 0) = ugi(z), = €T,

where A = ((w;, w;)) and K = (a(w;, w,)) are two sym-
metric positive definite matrices.

In principle, the problem is solved, but, it may be difficult
to find good spaces V,, good triangulations of €2, and good
bases of V,, to be able to compute the matrices A and
K, and to ensure that they are sparse.



