
Chapter 3

Gaussian Elimination,
LU-Factorization,
and Cholesky Factorization

3.1 Gaussian Elimination and LU-Factorization

Let A be an n×nmatrix, let b ∈ Rn be an n-dimensional
vector and assume that A is invertible.

Our goal is to solve the system Ax = b. Since A is
assumed to be invertible, we know that this system has a
unique solution, x = A−1b.

Experience shows that two counter-intuitive facts are re-
vealed:
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(1) One should avoid computing the inverse, A−1, of A
explicitly. This is because this would amount to solv-
ing the n linear systems, Au(j) = ej, for j = 1, . . . , n,
where ej = (0, . . . , 1, . . . , 0) is the jth canonical basis
vector of Rn (with a 1 is the jth slot).

By doing so, we would replace the resolution of a single
system by the resolution of n systems, and we would
still have to multiply A−1 by b.

(2) One does not solve (large) linear systems by comput-
ing determinants (using Cramer’s formulae).

This is because this method requires a number of ad-
ditions (resp. multiplications) proportional to (n+1)!
(resp. (n + 2)!).

The key idea on which most direct methods are based is
that if A is an upper-triangular matrix , which means
that aij = 0 for 1 ≤ j < i ≤ n (resp. lower-triangular,
which means that aij = 0 for 1 ≤ i < j ≤ n), then
computing the solution, x, is trivial.
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Indeed, say A is an upper-triangular matrix

A =





a1 1 a1 2 · · · a1n−2 a1n−1 a1n
0 a2 2 · · · a2n−2 a2n−1 a2n
0 0 . . . ... ... ...

. . . ... ...
0 0 · · · 0 an−1n−1 an−1n

0 0 · · · 0 0 ann




.

Then, det(A) = a1 1a2 2 · · · ann �= 0, and we can solve the
system Ax = b from bottom-up by back-substitution ,
i.e., first we compute xn from the last equation, next plug
this value of xn into the next to the last equation and
compute xn−1 from it, etc.

This yields

xn = a−1
nnbn

xn−1 = a−1
n−1n−1(bn−1 − an−1nxn)

...

x1 = a−1
1 1 (b1 − a1 2x2 − · · · − a1nxn).

If A was lower-triangular, we would solve the system from
top-down by forward-substitution .
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Thus, what we need is a method for transforming a matrix
to an equivalent one in upper-triangular form.

This can be done by elimination .

Consider the following example:

2x + y + z = 5
4x − 6y = −2
−2x + 7y + 2z = 9.

We can eliminate the variable x from the second and
the third equation as follows: Subtract twice the first
equation from the second and add the first equation to
the third. We get the new system

2x + y + z = 5
− 8y − 2z = −12

8y + 3z = 14.

This time, we can eliminate the variable y from the third
equation by adding the second equation to the third:
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2x + y + z = 5
− 8y − 2z = −12

z = 2.

This last system is upper-triangular.

Using back-substitution, we find the solution: z = 2,
y = 1, x = 1.

Observe that we have performed only row operations .

The general method is to iteratively eliminate variables
using simple row operations (namely, adding or subtract-
ing a multiple of a row to another row of the matrix) while
simultaneously applying these operations to the vector b,
to obtain a system, MAx = Mb, where MA is
upper-triangular .

Such a method is called Gaussian elimination .
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However, one extra twist is needed for the method to
work in all cases: It may be necessary to permute rows ,
as illustrated by the following example:

x + y + z = 1
x + y + 3z = 1
2x + 5y + 8z = 1.

In order to eliminate x from the second and third row,
we subtract the first row from the second and we subtract
twice the first row from the third:

x + y + z = 1
2z = 0

3y + 6z = −1.

Now, the trouble is that y does not occur in the second
row; so, we can’t eliminate y from the third row by adding
or subtracting a multiple of the second row to it.

The remedy is simple: permute the second and the third
row! We get the system:
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x + y + z = 1
3y + 6z = −1

2z = 0,

which is already in triangular form.

Another example where some permutations are needed is:

z = 1
−2x + 7y + 2z = 1
4x − 6y = −1.

First, we permute the first and the second row, obtaining

−2x + 7y + 2z = 1
z = 1

4x − 6y = −1,

and then, we add twice the first row to the third (to
eliminate x) obtaining:

−2x + 7y + 2z = 1
z = 1

8y + 4z = 1.
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Again, we permute the second and the third row, getting

−2x + 7y + 2z = 1
8y + 4z = 1

z = 1,

an upper-triangular system.

Of course, in this example, z is already solved and we
could have eliminated it first, but for the general method,
we need to proceed in a systematic fashion.

We now describe the method of Gaussian Elimination
applied to a linear system, Ax = b, where A is assumed
to be invertible.

We use the variable k to keep track of the stages of elim-
ination. Initially, k = 1.
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(1) The first step is to pick some nonzero entry, ai 1, in
the first column of A. Such an entry must exist, since
A is invertible (otherwise, we would have det(A) = 0).
The actual choice of such an element has some impact
on the numerical stability of the method, but this will
be examined later. For the time being, we assume that
some arbitrary choice is made. This chosen element is
called the pivot of the elimination step and is denoted
π1 (so, in this first step, π1 = ai 1).

(2) Next, we permute the row (i) corresponding to the
pivot with the first row. Such a step is called pivoting .
So, after this permutation, the first element of the first
row is nonzero.

(3) We now eliminate the variable x1 from all rows except
the first by adding suitable multiples of the first row
to these rows. More precisely we add −ai 1/π1 times
the first row to the ith row, for i = 2, . . . , n. At the
end of this step, all entries in the first column are zero
except the first.
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(4) Increment k by 1. If k = n, stop. Otherwise, k < n,
and then iteratively repeat steps (1), (2), (3) on the
(n − k + 1) × (n − k + 1) subsystem obtained by
deleting the first k − 1 rows and k − 1 columns from
the current system.

If we let A1 = A and Ak = (aki j) be the matrix obtained
after k − 1 elimination steps (2 ≤ k ≤ n), then the kth
elimination step is applied to the matrix Ak of the form

Ak =





ak1 1 ak1 2 · · · · · · · · · ak1n
ak2 2 · · · · · · · · · ak2n

. . . ... ...
akk k · · · akk n
... ...

akn k · · · aknn




.

Actually, note
aki j = aii j

for all i, j with 1 ≤ i ≤ k − 1 and i ≤ j ≤ n, since
the first k− 1 rows remain unchanged after the (k− 1)th
step.
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Now, we will prove later that det(Ak) = ± det(A).

Since A is invertible, some entry aki k with k ≤ i ≤ n is
nonzero; so, one of these entries can be chosen as pivot,
and we permute the kth row with the ith row, obtaining
the matrix αk = (αk

j l).

The new pivot is πk = αk
k k, and we zero the entries i =

k + 1, . . . , n in column k by adding −αk
i k/πk times row

k to row i. At the end of this step, we have Ak+1.

Observe that the first k − 1 rows of Ak are identical to
the first k − 1 rows of Ak+1.
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The permutation of the kth row with the ith row is
achieved by multiplying A on the left by the transpo-
sition matrix P (i, k), which is the matrix obtained from
the identity matrix by permuting rows i and k, i.e.,

P (i, k) =





1
1
0 1
1
. . .

1
1 0

1
1





.

Observe that det(P (i, k)) = −1.

Therefore, during the permutation step (2), if row k and
row i need to be permuted, the matrix A is multiplied on
the left by the matrix Pk such that Pk = P (i, k), else we
set Pk = I .
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Adding β times row j to row i is achieved by multiplying
A on the left by the elementary matrix ,

Ei,j;β = I + βei,j,

where

(ei,j)k l =

�
1 if k = i and l = j
0 if k �= i or l �= j,

i.e.,

Ei,j;β =





1
1

1
1
. . .

1
β 1

1
1





.

Observe that the inverse of Ei,j;β = I + βei j is
Ei,j;−β = I − βei,j and that det(Ei,j;β) = 1.

Therefore, during step 3 (the elimination step), the ma-
trix A is multiplied on the left by a product, Ek, of ma-
trices of the form Ei,k;βi,k.
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Consequently, we see that

Ak+1 = EkPkAk.

The fact that det(P (i, k)) = −1 and that det(Ei,j;β) = 1
implies immediately the fact claimed above: We always
have det(Ak) = ± det(A). Furthermore, since

Ak+1 = EkPkAk

and since Gaussian elimination stops for k = n, the ma-
trix

An = En−1Pn−1 · · ·E2P2E1P1A

is upper-triangular .

Also note that if we let

M = En−1Pn−1 · · ·E2P2E1P1,

then det(M) = ±1, and

det(A) = ± det(An).

We can summarize all this in the following theorem:
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Theorem 3.1. (Gaussian Elimination) Let A be an
n× n matrix (invertible or not). Then there is some
invertible matrix, M , so that U = MA is upper-
triangular. The pivots are all nonzero iff A is in-
vertible.

Remark: Obviously, the matrixM can be computed as

M = En−1Pn−1 · · ·E2P2E1P1,

but this expression is of no use.

Indeed, what we need is M−1; when no permutations are
needed, it turns out that M−1 can be obtained immedi-
ately from the matrices Ek’s, in fact, from their inverses,
and no multiplications are necessary.
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Remark: Instead of looking for an invertible matrix,
M , so that MA is upper-triangular, we can look for an
invertible matrix, M , so that MA is a diagonal matrix .

Only a simple change to Gaussian elimination is needed.

At every stage, k, after the pivot has been found and piv-
oting been performed, if necessary, in addition to adding
suitable multiples of the kth row to the rows below row
k in order to zero the entries in column k for i = k +
1, . . . , n, also add suitable multiples of the kth row to
the rows above row k in order to zero the entries in col-
umn k for i = 1, . . . , k − 1.

Such steps are also achieved by multiplying on the left by
elementary matrices Ei,k;βi,k, except that i < k, so that
these matrices are not lower-diagonal matrices.

Nevertheless, at the end of the process, we find that
An = MA, is a diagonal matrix.
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This method is called the Gauss-Jordan factorization .
Because it is more expansive than Gaussian elimination,
this method is not used much in practice.

However, Gauss-Jordan factorization can be used to com-
pute the inverse of a matrix, A.

It remains to discuss the choice of the pivot, and also con-
ditions that guarantee that no permutations are needed
during the Gaussian elimination process.

We begin by stating a necessary and sufficient condition
for an invertible matrix to have an LU -factorization (i.e.,
Gaussian elimination does not require pivoting).

We say that an invertible matrix, A, has an
LU-factorization if it can be written as A = LU , where
U is upper-triangular invertible and L is lower-triangular ,
with Li i = 1 for i = 1, . . . , n.
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A lower-triangular matrix with diagonal entries equal to
1 is called a unit lower-triangular matrix.

Given an n × n matrix, A = (ai j), for any k, with 1 ≤
k ≤ n, let A[1..k, 1..k] denote the submatrix of A whose
entries are ai j, where 1 ≤ i, j ≤ k.

Proposition 3.2. Let A be an invertible n×n-matrix.
Then, A, has an LU-factorization, A = LU , iff every
matrix A[1..k, 1..k] is invertible for k = 1, . . . , n.

Corollary 3.3. (LU-Factorization) Let A be an in-
vertible n × n-matrix. If every matrix A[1..k, 1..k] is
invertible for k = 1, . . . , n, then Gaussian elimination
requires no pivoting and yields an LU-factorization,
A = LU .
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The reader should verify that the example below is indeed
an LU -factorization.





2 1 1 0
4 3 3 1
8 7 9 5
6 7 9 8



 =





1 0 0 0
2 1 0 0
4 3 1 0
3 4 1 1









2 1 1 0
0 1 1 1
0 0 2 2
0 0 0 2



 .

One of the main reasons why the existence of an LU -
factorization for a matrix, A, is interesting is that if we
need to solve several linear systems, Ax = b, correspond-
ing to the same matrix, A, we can do this cheaply by
solving the two triangular systems

Lw = b, and Ux = w.

As we will see a bit later, symmetric positive definite
matrices satisfy the condition of Proposition 3.2.

Therefore, linear systems involving symmetric positive
definite matrices can be solved by Gaussian elimination
without pivoting.
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Actually, it is possible to do better: This is the Cholesky
factorization.

The following easy proposition shows that, in principle,
A can be premultipied by some permutation matrix, P ,
so that PA can be converted to upper-triangular form
without using any pivoting.

Proposition 3.4. Let A be an invertible n×n-matrix.
Then, there is some permutation matrix, P , so that
PA[1..k, 1..k] is invertible for k = 1, . . . , n.

Remark: One can also prove Proposition 3.4 using a
clever reordering of the Gaussian elimination steps.

Theorem 3.5. For every invertible n× n-matrix, A,
there is some permutation matrix, P , some upper-
triangular matrix, U , and some unit lower-triangular
matrix, L, so that PA = LU (recall, Li i = 1 for
i = 1, . . . , n). Furthermore, if P = I, then L and
U are unique and they are produced as a result of
Gaussian elimination without pivoting. Furthermore,
if P = I, then L is simply obtained from the E−1

k ’s.
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Remark: It can be shown that Gaussian elimination +
back-substitution requires n3/3+O(n2) additions, n3/3+
O(n2) multiplications and n2/2 +O(n) divisions.

Let us now briefly comment on the choice of a pivot.

Although theoretically, any pivot can be chosen, the pos-
sibility of roundoff errors implies that it is not a good
idea to pick very small pivots . The following example
illustrates this point.

10−4x + y = 1
x + y = 2.

Since 10−4 is nonzero, it can be taken as pivot, and we
get

10−4x + y = 1
(1− 104)y = 2− 104.

Thus, the exact solution is

x =
104

104 − 1
, y =

104 − 2

104 − 1
.
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However, if roundoff takes place on the fourth digit, then
104 − 1 = 9999 and 104 − 2 = 9998 will be rounded off
both to 9990, and then, the solution is x = 0 and y = 1,
very far from the exact solution where x ≈ 1 and y ≈ 1.

The problem is that we picked a very small pivot .

If instead we permute the equations, the pivot is 1, and
after elimination, we get the system

x + y = 2
(1− 10−4)y = 1− 2× 10−4.

This time, 1 − 10−4 = −0.9999 and 1 − 2 × 10−4 =
−0.9998 are rounded off to 0.999 and the solution is
x = 1, y = 1, much closer to the exact solution.
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To remedy this problem, one may use the strategy of
partial pivoting .

This consists of choosing during step k (1 ≤ k ≤ n− 1)
one of the entries aki k such that

|aki k| = max
k≤p≤n

|akp k|.

By maximizing the value of the pivot, we avoid dividing
by undesirably small pivots.

Remark: A matrix, A, is called strictly column diag-
onally dominant iff

|aj j| >
n�

i=1, i�=j

|ai j|, for j = 1, . . . , n

(resp. strictly row diagonally dominant iff

|ai i| >
n�

j=1, j �=i

|ai j|, for i = 1, . . . , n.)
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It has been known for a long time (before 1900, say by
Hadamard) that if a matrix, A, is strictly column diago-
nally dominant (resp. strictly row diagonally dominant),
then it is invertible. (This is a good exercise, try it!)

It can also be shown that if A is strictly column diago-
nally dominant, then Gaussian elimination with partial
pivoting does not actually require pivoting.

Another strategy, called complete pivoting , consists in
choosing some entry aki j, where k ≤ i, j ≤ n, such that

|aki j| = max
k≤p,q≤n

|akp q|.

However, in this method, if the chosen pivot is not in
column k, it is also necessary to permute columns .
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This is achieved by multiplying on the right by a permu-
tation matrix.

However, complete pivoting tends to be too expansive in
practice, and partial pivoting is the method of choice.

A special case where the LU -factorization is particularly
efficient is the case of tridiagonal matrices, which we now
consider.



196CHAPTER 3. GAUSSIAN ELIMINATION, LU AND CHOLESKY FACTORIZATION

3.2 Gaussian Elimination of Tridiagonal Matrices

Consider the tridiagonal matrix

A =





b1 c1
a2 b2 c2

a3 b3 c3
. . . . . . . . .

an−2 bn−2 cn−2

an−1 bn−1 cn−1

an bn





.

Define the sequence

δ0 = 1,

δ1 = b1,

δk = bkδk−1 − akck−1δk−2, 2 ≤ k ≤ n.

Proposition 3.6. If A is the tridiagonal matrix above,
then δk = det(A[1..k, 1..k]), for k = 1, . . . , n.
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Theorem 3.7. If A is the tridiagonal matrix above
and δk �= 0 for k = 1, . . . , n, then A has the following
LU-factorization:

A =





1

a2
δ0
δ1

1

a3
δ1
δ2

1

. . . . . .

an−1
δn−3

δn−2
1

an
δn−2

δn−1
1









δ1
δ0

c1

δ2
δ1

c2

δ3
δ2

c3
. . . . . .

δn−1

δn−2
cn−1

δn
δn−1





.
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It follows that there is a simple method to solve a linear
system, Ax = d, where A is tridiagonal (and δk �= 0 for
k = 1, . . . , n).

For this, it is convenient to “squeeze” the diagonal matrix,
∆, defined such that ∆k k = δk/δk−1, into the factoriza-
tion so that A = (L∆)(∆−1U), and if we let

z1 =
c1
b1
,

zk = ck
δk−1

δk
, 2 ≤ k ≤ n− 1,

zn =
δn
δn−1

= bn − anzn−1,

A = (L∆)(∆−1U) is written as
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A =





c1
z1
a2

c2
z2
a3

c3
z3. . . . . .

an−1
cn−1

zn−1
an zn









1 z1

1 z2

1 z3

. . . . . .

1 zn−2

1 zn−1

1





.
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As a consequence, the system Ax = d can be solved by
constructing three sequences: First, the sequence

z1 =
c1
b1
,

zk =
ck

bk − akzk−1
, k = 2, . . . , n− 1,

zn = bn − anzn−1,

corresponding to the recurrence δk = bkδk−1−akck−1δk−2

and obtained by dividing both sides of this equation by
δk−1, next

w1 =
d1
b1
, wk =

dk − akwk−1

bk − akzk−1
, k = 2, . . . , n,

corresponding to solving the system L∆w = d, and fi-
nally

xn = wn, xk = wk− zkxk+1, k = n− 1, n− 2, . . . , 1,

corresponding to solving the system ∆−1Ux = w.
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Remark: It can be verified that this requires 3(n − 1)
additions, 3(n − 1) multiplications, and 2n divisions, a
total of 8n − 6 operations, which is much less that the
O(2n3/3) required by Gaussian elimination in general.

We now consider the special case of symmetric positive
definite matrices (SPD matrices).

Recall that an n × n symmetric matrix, A, is positive
definite iff

x�Ax > 0 for all x ∈ Rn with x �= 0.

Equivalently, A is symmetric positive definite iff all its
eigenvalues are strictly positive.
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The following facts about a symmetric positive definite
matrice, A, are easily established:

(1) The matrix A is invertible. (Indeed, if Ax = 0, then
x�Ax = 0, which implies x = 0.)

(2) We have ai i > 0 for i = 1, . . . , n. (Just observe that
for x = ei, the ith canonical basis vector of Rn, we
have e�i Aei = ai i > 0.)

(3) For every n × n invertible matrix, Z, the matrix
Z�AZ is symmetric positive definite iff A is symmet-
ric positive definite.

Next, we prove that a symmetric positive definite matrix
has a special LU -factorization of the form A = BB�,
where B is a lower-triangular matrix whose diagonal ele-
ments are strictly positive.

This is the Cholesky factorization .



3.3. SPD MATRICES AND THE CHOLESKY DECOMPOSITION 203

3.3 SPD Matrices and the Cholesky Decomposition

First, we note that a symmetric positive definite matrix
satisfies the condition of Proposition 3.2.

Proposition 3.8. If A is a symmetric positive def-
inite matrix, then A[1..k, 1..k] is invertible for k =
1, . . . , n.

Let A be a symmetric positive definite matrix and write

A =

�
a1 1 W�

W B

�
.

Since A is symmetric positive definite, a1 1 > 0, and we
can compute α =

√
a1 1. The trick is that we can factor

A uniquely as

A =

�
a1 1 W�

W B

�

=

�
α 0

W/α I

��
1 0
0 B −WW�/a1 1

��
α W�/α
0 I

�
,

i.e., as A = B1A1B�
1 , where B1 is lower-triangular with

positive diagonal entries.
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Thus, B1 is invertible, and by fact (3) above, A1 is also
symmetric positive definite.

Theorem 3.9. (Cholesky Factorization) Let A be a
symmetric positive definite matrix. Then, there is
some lower-triangular matrix, B, so that A = BB�.
Furthermore, B can be chosen so that its diagonal ele-
ments are strictly positive, in which case, B is unique.

Remark: If A = BB�, where B is any invertible ma-
trix, then A is symmetric positive definite.

The proof of Theorem 3.9 immediately yields an algo-
rithm to compute B from A. For j = 1, . . . , n,

bj j =

�
aj j −

j−1�

k=1

b2j k

�1/2

,

and for i = j + 1, . . . , n,

bi j =

�
ai j −

j−1�

k=1

bi kbj k

�
/bj j.
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The Cholesky factorization can be used to solve linear
systems, Ax = b, where A is symmetric positive definite:

Solve the two systems Bw = b and B�x = w.

Remark: It can be shown that this methods requires
n3/6 + O(n2) additions, n3/6 + O(n2) multiplications,
n2/2+O(n) divisions, and O(n) square root extractions.

Thus, the Cholesky method requires half of the num-
ber of operations required by Gaussian elimination (since
Gaussian elimination requires n3/3 + O(n2) additions,
n3/3+O(n2) multiplications, and n2/2+O(n) divisions).

It also requires half of the space (only B is needed, as
opposed to both L and U).
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Furthermore, it can be shown that Cholesky’s method is
numerically stable.

Remark: Proposition 3.8 can be strengthened as fol-
lows: A symmetric matrix is positive definite iff
det(A[1..k, 1..k]) > 0 for k = 1, . . . , n.

The above fact is known as Sylvester’s criterion .

Another criterion is that Gaussian elimination needs no
pivoting and that all the pivots are strictly positive.

For more on the stability analysis and efficient implemen-
tation methods of Gaussian elimination, LU -factoring
and Cholesky factoring, see Demmel [11], Trefethen and
Bau [30], Ciarlet [9], Golub and Van Loan [15], Strang
[27, 28], and Kincaid and Cheney [19].


