
Chapter 12

Quadratic Optimization Problems

12.1 Quadratic Optimization: The Positive Definite
Case

In this chapter, we consider two classes of quadratic opti-
mization problems that appear frequently in engineering
and in computer science (especially in computer vision):

1. Minimizing

f (x) =
1

2
x�Ax + x�b

over all x ∈ Rn, or subject to linear or affine con-
straints.

2. Minimizing

f (x) =
1

2
x�Ax + x�b

over the unit sphere.
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In both cases, A is a symmetric matrix. We also seek
necessary and sufficient conditions for f to have a global
minimum.

Many problems in physics and engineering can be stated
as the minimization of some energy function, with or
without constraints.

Indeed, it is a fundamental principle of mechanics that
nature acts so as to minimize energy.

Furthermore, if a physical system is in a stable state of
equilibrium, then the energy in that state should be min-
imal.

The simplest kind of energy function is a quadratic func-
tion.
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Such functions can be conveniently defined in the form

P (x) = x�Ax− x�b,

whereA is a symmetric n×nmatrix, and x, b, are vectors
in Rn, viewed as column vectors.

Actually, for reasons that will be clear shortly, it is prefer-
able to put a factor 1

2 in front of the quadratic term, so
that

P (x) =
1

2
x�Ax− x�b.

The question is, under what conditions (on A) does P (x)
have a global minimum, preferably unique?
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We give a complete answer to the above question in two
stages:

1. In this section, we show that if A is symmetric posi-
tive definite, then P (x) has a unique global minimum
precisely when

Ax = b.

2. In Section 12.2, we give necessary and sufficient con-
ditions in the general case, in terms of the pseudo-
inverse of A.

We begin with the matrix version of Definition 10.2.

Definition 12.1.A symmetric positive definite matrix
is a matrix whose eigenvalues are strictly positive, and
a symmetric positive semidefinite matrix is a matrix
whose eigenvalues are nonnegative.
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Equivalent criteria are given in the following proposition.

Proposition 12.1. Given any Euclidean space E of
dimension n, the following properties hold:

(1) Every self-adjoint linear map f : E → E is positive
definite iff

�x, f (x)� > 0

for all x ∈ E with x �= 0.

(2) Every self-adjoint linear map f : E → E is positive
semidefinite iff

�x, f (x)� ≥ 0

for all x ∈ E.

Some special notation is customary (especially in the field
of convex optinization) to express that a symmetric ma-
trix is positive definite or positive semidefinite.
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Definition 12.2. Given any n×n symmetric matrix A
we write A � 0 if A is positive semidefinite and we write
A � 0 if A is positive definite.

It should be noted that we can define the relation

A � B

between any two n × n matrices (symmetric or not) iff
A− B is symmetric positive semidefinite.

It is easy to check that this relation is actually a partial
order on matrices, called the positive semidefinite cone
ordering ; for details, see Boyd and Vandenberghe [8],
Section 2.4.

If A is symmetric positive definite, it is easily checked
that A−1 is also symmetric positive definite.

Also, if C is a symmetric positive definite m×m matrix
and A is an m × n matrix of rank n (and so m ≥ n),
then A�CA is symmetric positive definite.
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We can now prove that

P (x) =
1

2
x�Ax− x�b

has a global minimum when A is symmetric positive def-
inite.

Proposition 12.2. Given a quadratic function

P (x) =
1

2
x�Ax− x�b,

if A is symmetric positive definite, then P (x) has a
unique global minimum for the solution of the linear
system Ax = b. The minimum value of P (x) is

P (A−1b) = −1

2
b�A−1b.
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Remarks:

(1) The quadratic function P (x) is also given by

P (x) =
1

2
x�Ax− b�x,

but the definition using x�b is more convenient for
the proof of Proposition 12.2.

(2) If P (x) contains a constant term c ∈ R, so that

P (x) =
1

2
x�Ax− x�b + c,

the proof of Proposition 12.2 still shows that P (x)
has a unique global minimum for x = A−1b, but the
minimal value is

P (A−1b) = −1

2
b�A−1b + c.
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Thus, when the energy function P (x) of a system is given
by a quadratic function

P (x) =
1

2
x�Ax− x�b,

where A is symmetric positive definite, finding the global
minimum of P (x) is equivalent to solving the linear
system Ax = b.

Sometimes, it is useful to recast a linear problem Ax = b
as a variational problem (finding the minimum of some
energy function).

However, very often, a minimization problem comes with
extra constraints that must be satisfied for all admissible
solutions.
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For instance, we may want to minimize the quadratic
function

Q(y1, y2) =
1

2

�
y21 + y22

�

subject to the constraint

2y1 − y2 = 5.

The solution for which Q(y1, y2) is minimum is no longer
(y1, y2) = (0, 0), but instead, (y1, y2) = (2,−1), as will
be shown later.

Geometrically, the graph of the function defined by
z = Q(y1, y2) in R3 is a paraboloid of revolution P with
axis of revolution Oz.

The constraint
2y1 − y2 = 5

corresponds to the vertical plane H parallel to the z-axis
and containing the line of equation 2y1 − y2 = 5 in the
xy-plane.
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Thus, the constrained minimum of Q is located on the
parabola that is the intersection of the paraboloid P with
the plane H .

A nice way to solve constrained minimization problems
of the above kind is to use the method of Lagrange mul-
tipliers .

Definition 12.3.The quadratic constrained minimiza-
tion problem consists in minimizing a quadratic function

Q(y) =
1

2
y�C−1y − b�y

subject to the linear constraints

A�y = f,

where C−1 is an m×m symmetric positive definite ma-
trix, A is an m × n matrix of rank n (so that m ≥ n),
and where b, y ∈ Rm (viewed as column vectors), and
f ∈ Rn (viewed as a column vector).
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The reason for using C−1 instead of C is that the con-
strained minimization problem has an interpretation as
a set of equilibrium equations in which the matrix that
arises naturally is C (see Strang [27]).

Since C and C−1 are both symmetric positive definite,
this doesn’t make any difference, but it seems preferable
to stick to Strang’s notation.

The method of Lagrange consists in incorporating the
n constraints A�y = f into the quadratic function
Q(y), by introducing extra variables λ = (λ1, . . . ,λn)
called Lagrange multipliers , one for each constraint. We
form the Lagrangian

L(y,λ) = Q(y) + λ�(A�y − f )

=
1

2
y�C−1y − (b− Aλ)�y − λ�f.
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We shall prove that our constrained minimization prob-
lem has a unique solution given by the system of linear
equations

C−1y + Aλ = b,

A�y = f,

which can be written in matrix form as
�
C−1 A
A� 0

��
y
λ

�
=

�
b
f

�
.

Note that the matrix of this system is symmetric. Elimi-
nating y from the first equation

C−1y + Aλ = b,

we get
y = C(b− Aλ),

and substituting into the second equation, we get

A�C(b− Aλ) = f,

that is,
A�CAλ = A�Cb− f.
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However, by a previous remark, since C is symmetric
positive definite and the columns of A are linearly inde-
pendent, A�CA is symmetric positive definite, and thus
invertible.

Note that this way of solving the system requires solving
for the Lagrange multipliers first.

Letting e = b− Aλ, we also note that the system
�
C−1 A
A� 0

��
y
λ

�
=

�
b
f

�

is equivalent to the system

e = b− Aλ,

y = Ce,

A�y = f.

The latter system is called the equilibrium equations by
Strang [27].
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Indeed, Strang shows that the equilibrium equations of
many physical systems can be put in the above form.

In order to prove that our constrained minimization prob-
lem has a unique solution, we proceed to prove that the
constrained minimization of Q(y) subject to A�y = f
is equivalent to the unconstrained maximization of an-
other function −P (λ).

We get P (λ) by minimizing the Lagrangian L(y,λ)
treated as a function of y alone .

Since C−1 is symmetric positive definite and

L(y,λ) =
1

2
y�C−1y − (b− Aλ)�y − λ�f,

by Proposition 12.2 the global minimum (with respect to
y) of L(y,λ) is obtained for the solution y of

C−1y = b− Aλ,

and the minimum of L(y,λ) is

min
y

L(y,λ) = −1

2
(Aλ− b)�C(Aλ− b)− λ�f.
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Letting

P (λ) =
1

2
(Aλ− b)�C(Aλ− b) + λ�f,

we claim that the solution of the constrained minimiza-
tion of Q(y) subject to A�y = f is equivalent to the
unconstrained maximization of −P (λ).

In order to prove that the unique minimum of the con-
strained problem Q(y) subject to A�y = f is the unique
maximum of −P (λ), we compute Q(y) + P (λ).

Proposition 12.3. The quadratic constrained mini-
mization problem of Definition 12.3 has a unique so-
lution (y,λ) given by the system

�
C−1 A
A� 0

��
y
λ

�
=

�
b
f

�
.

Furthermore, the component λ of the above solution
is the unique value for which −P (λ) is maximum.
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Remarks:

(1) There is a form of duality going on in this situa-
tion. The constrained minimization of Q(y) subject
to A�y = f is called the primal problem , and the un-
constrained maximization of −P (λ) is called the dual
problem . Duality is the fact stated slightly loosely as

min
y

Q(y) = max
λ

−P (λ).

Recalling that e = b− Aλ, since

P (λ) =
1

2
(Aλ− b)�C(Aλ− b) + λ�f,

we can also write

P (λ) =
1

2
e�Ce + λ�f.

This expression often represents the total potential
energy of a system. Again, the optimal solution is
the one that minimizes the potential energy (and thus
maximizes −P (λ)).
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(2) It is immediately verified that the equations of Propo-
sition 12.3 are equivalent to the equations stating that
the partial derivatives of the Lagrangian L(y,λ) are
null:

∂L

∂yi
= 0, i = 1, . . . ,m,

∂L

∂λj
= 0, j = 1, . . . , n.

Thus, the constrained minimum of Q(y) subject to
A�y = f is an extremum of the Lagrangian L(y,λ).
As we showed in Proposition 12.3, this extremum cor-
responds to simultaneously minimizing L(y,λ) with
respect to y and maximizing L(y,λ) with respect to
λ. Geometrically, such a point is a saddle point for
L(y,λ).

(3) The Lagrange multipliers sometimes have a natural
physical meaning.
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Going back to the constrained minimization of
Q(y1, y2) =

1
2(y

2
1 + y22) subject to

2y1 − y2 = 5,

the Lagrangian is

L(y1, y2,λ) =
1

2

�
y21 + y22

�
+ λ(2y1 − y2 − 5),

and the equations stating that the Lagrangian has a sad-
dle point are

y1 + 2λ = 0,

y2 − λ = 0,

2y1 − y2 − 5 = 0.

We obtain the solution (y1, y2,λ) = (2,−1,−1).



466 CHAPTER 12. QUADRATIC OPTIMIZATION PROBLEMS

12.2 Quadratic Optimization: The General Case

In this section, we complete the study initiated in Section
12.1 and give necessary and sufficient conditions for the
quadratic function 1

2x
�Ax + x�b to have a global mini-

mum.

We begin with the following simple fact:

Proposition 12.4. If A is an invertible symmetric
matrix, then the function

f (x) =
1

2
x�Ax + x�b

has a minimum value iff A � 0, in which case this op-
timal value is obtained for a unique value of x, namely
x∗ = −A−1b, and with

f (A−1b) = −1

2
b�A−1b.
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Let us now consider the case of an arbitrary symmetric
matrix A.

Proposition 12.5. If A is a symmetric matrix, then
the function

f (x) =
1

2
x�Ax + x�b

has a minimum value iff A � 0 and (I − AA+)b = 0,
in which case this minimum value is

p∗ = −1

2
b�A+b.

Furthermore, if A = U�ΣU is an SVD of A, then the
optimal value is achieved by all x ∈ Rn of the form

x = −A+b + U�
�
0
z

�
,

for any z ∈ Rn−r, where r is the rank of A.
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The case in which we add either linear constraints of the
form C�x = 0 or affine constraints of the form C�x = t
(where t �= 0) can be reduced to the unconstrained case
using a QR-decomposition of C or N .

Let us show how to do this for linear constraints of the
form C�x = 0.

If we use a QR decomposition of C, by permuting the
columns, we may assume that

C = Q�
�
R S
0 0

�
Π,

where R is an r × r invertible upper triangular matrix
and S is an r × (m− r) matrix (C has rank r).
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Then, if we let

x = Q�
�
y
z

�
,

where y ∈ Rr and z ∈ Rn−r, then, after some calcula-
tions, our original problem becomes

minimize
1

2
(y�, z�)QAQ�

�
y
z

�
+ (y�, z�)Qb

subject to y = 0, y ∈ Rr, z ∈ Rn−r.

Thus, the constraint C�x = 0 has been eliminated, and
if we write

QAQ� =

�
G11 G12

G21 G22

�

and

Qb =

�
b1
b2

�
, b1 ∈ Rr, b2 ∈ Rn−r,

our problem becomes

minimize
1

2
z�G22z + z�b2, z ∈ Rn−r,

the problem solved in Proposition 12.5.
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Constraints of the form C�x = t (where t �= 0) can be
handled in a similar fashion.

In this case, we may assume that C is an n×m matrix
with full rank (so that m ≤ n) and t ∈ Rm.
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12.3 Maximizing a Quadratic Function on the Unit
Sphere

In this section we discuss various quadratic optimization
problems mostly arising from computer vision (image seg-
mentation and contour grouping).

These problems can be reduced to the following basic
optimization problem: Given an n × n real symmetric
matrix A

maximize x�Ax

subject to x�x = 1, x ∈ Rn.

In view of Proposition 11.6, the maximum value of x�Ax
on the unit sphere is equal to the largest eigenvalue λ1 of
the matrix A, and it is achieved for any unit eigenvector
u1 associated with λ1.
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A variant of the above problem often encountered in com-
puter vision consists in minimizing x�Ax on the ellipsoid
given by an equation of the form

x�Bx = 1,

where B is a symmetric positive definite matrix.

Since B is positive definite, it can be diagonalized as

B = QDQ�,

where Q is an orthogonal matrix and D is a diagonal
matrix,

D = diag(d1, . . . , dn),

with di > 0, for i = 1, . . . , n.

If we define the matrices B1/2 and B−1/2 by

B1/2 = Q diag
��

d1, . . . ,
�

dn
�
Q�

and

B−1/2 = Q diag
�
1/
�
d1, . . . , 1/

�
dn
�
Q�,

it is clear that these matrices are symmetric, that
B−1/2BB−1/2 = I , and that B1/2 and B−1/2 are mutual
inverses.
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Then, if we make the change of variable

x = B−1/2y,

the equation x�Bx = 1 becomes y�y = 1, and the opti-
mization problem

maximize x�Ax

subject to x�Bx = 1, x ∈ Rn,

is equivalent to the problem

maximize y�B−1/2AB−1/2y

subject to y�y = 1, y ∈ Rn,

where y = B1/2x and where B−1/2AB−1/2 is symmetric.
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The complex version of our basic optimization problem
in which A is a Hermitian matrix also arises in computer
vision. Namely, given an n×n complex Hermitian matrix
A,

maximize x∗Ax

subject to x∗x = 1, x ∈ Cn.

Again by Proposition 11.6, the maximum value of x∗Ax
on the unit sphere is equal to the largest eigenvalue λ1 of
the matrix A and it is achieved for any unit eigenvector
u1 associated with λ1.

It is worth pointing out that if A is a skew-Hermitian
matrix, that is, if A∗ = −A, then x∗Ax is pure imagi-
nary or zero.
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In particular, if A is a real matrix and if A is skew-
symmetric, then

x�Ax = 0.

Thus, for any real matrix (symmetric or not),

x�Ax = x�H(A)x,

where H(A) = (A + A�)/2, the symmetric part of A.

There are situations in which it is necessary to add lin-
ear constraints to the problem of maximizing a quadratic
function on the sphere.

This problem was completely solved by Golub [14] (1973).

The problem is the following: Given an n × n real sym-
metric matrix A and an n× p matrix C,

minimize x�Ax

subject to x�x = 1, C�x = 0, x ∈ Rn.
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Golub shows that the linear constraint C�x = 0 can be
eliminated as follows: If we use a QR decomposition of
C, by permuting the columns, we may assume that

C = Q�
�
R S
0 0

�
Π,

where R is an r × r invertible upper triangular matrix
and S is an r× (p− r) matrix (assuming C has rank r).

Then if we let

x = Q�
�
y
z

�
,

where y ∈ Rr and z ∈ Rn−r, then, after some calcula-
tions, our original problem becomes

minimize (y�, z�)QAQ�
�
y
z

�

subject to z�z = 1, z ∈ Rn−r,

y = 0, y ∈ Rr.
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Thus, the constraint C�x = 0 has been eliminated, and
if we write

QAQ� =

�
G11 G12

G�
12 G22

�
,

our problem becomes

minimize z�G22z

subject to z�z = 1, z ∈ Rn−r,

a standard eigenvalue problem.

Observe that if we let

J =

�
0 0
0 In−r

�
,

then

JQAQ�J =

�
0 0
0 G22

�
,

and if we set
P = Q�JQ,

then
PAP = Q�JQAQ�JQ.
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Now,Q�JQAQ�JQ and JQAQ�J have the same eigen-
values, so PAP and JQAQ�J also have the same eigen-
values.

It follows that the solutions of our optimization problem
are among the eigenvalues of K = PAP , and at least r
of those are 0.

Using the fact that CC+ is the projection onto the range
of C, where C+ is the pseudo-inverse of C, it can also be
shown that

P = I − CC+,

the projection onto the kernel of C�.

In particular, when n ≥ p and C has full rank (the
columns of C are linearly independent), then we know
that C+ = (C�C)−1C� and

P = I − C(C�C)−1C�.

This fact is used by Cour and Shi [10] and implicitly by
Yu and Shi [32].
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The problem of adding affine constraints of the form
N�x = t, where t �= 0, also comes up in practice.

At first glance, this problem may not seem harder than
the linear problem in which t = 0, but it is.

This problem was extensively studied in a paper by Gan-
der, Golub, and von Matt [13] (1989).

Gander, Golub, and vonMatt consider the following prob-
lem:

Given an (n + m) × (n + m) real symmetric matrix A
(with n > 0), an (n +m)×m matrix N with full rank,
and a nonzero vector t ∈ Rm with

��(N�)†t
�� < 1 (where

(N�)† denotes the pseudo-inverse of N�),

minimize x�Ax

subject to x�x = 1, N�x = t, x ∈ Rn+m.

The condition
��(N�)†t

�� < 1 ensures that the problem
has a solution and is not trivial.
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The authors begin by proving that the affine constraint
N�x = t can be eliminated.

One way to do so is to use a QR decomposition of N .

It turns out that we get a simplified problem of the form

minimize z�Cz + 2z�b

subject to z�z = s2, z ∈ Rm.

Unfortunately, if b �= 0, Proposition 11.6 is no longer
applicable.

It is still possible to find the minimum of the function
z�Cz + 2z�b using Lagrange multipliers, but such a so-
lution is too involved to be presented here.

Interested readers will find a thorough discussion in Gan-
der, Golub, and von Matt [13].
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de Mathématiques. Hermann, 1970.
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