Problem B1 (50 pts). Linear programming with box constraints is the following optimization problem:

\[
\begin{align*}
\text{minimize} & \quad c^\top x \\
\text{subject to} & \quad Ax = b \\
& \quad l \leq x \leq u,
\end{align*}
\]

where \(A \) is an \(m \times n \) matrix, \(c, u, l, x \in \mathbb{R}^n \) and \(b \in \mathbb{R}^m \), with \(l \leq u \) (which means that \(l_i \leq u_i \), for \(i = 1, \ldots, n \)).

(1) (20 points) Prove that the dual of the above program is the following program:

\[
\begin{align*}
\text{maximize} & \quad -\nu^\top b - \lambda_1^\top u + \lambda_2^\top l \\
\text{subject to} & \quad A^\top \nu + \lambda_1 - \lambda_2 + c = 0 \\
& \quad \lambda_1 \geq 0, \quad \lambda_2 \geq 0.
\end{align*}
\]

(2) (10 points) The primal problem in (1) can be reformulated by incorporating the constraints \(l \leq x \leq u \) into the objective function by defining

\[
f_0(x) = \begin{cases}
 c^\top x & \text{if } l \leq x \leq u \\
 +\infty & \text{otherwise.}
\end{cases}
\]

The primal is reformulated as

\[
\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad Ax = b.
\end{align*}
\]

Prove that the new dual function is given by

\[
G(\nu) = \inf_{l \leq x \leq u} (c^\top x + \nu^\top (Ax - b)).
\]
(3) (20 points) Given any real number \(s \in \mathbb{R} \), let
\[
 s^+ = \max\{s, 0\}, \quad s^- = \max\{-s, 0\}.
\]
Prove that for any fixed reals \(s, \lambda, \mu \in \mathbb{R} \) with \(\lambda \leq \mu \),
\[
 \inf_{\lambda \leq y \leq \mu} sy = \lambda s^+ - \mu s^-.
\]
Hint. Consider the cases \(s \geq 0 \) and \(s \leq 0 \).

We extend the above operators to vectors \(z \in \mathbb{R}^n \) componentwise by
\[
 z^+ = (z_1^+, \ldots, z_n^+), \quad z^- = (z_1^-, \ldots, z_n^-).
\]
For any \(w \in \mathbb{R}^n \), prove that
\[
 \inf_{l \leq x \leq u} x^T w = l^T w^+ - u^T w^-.
\]
Use the above to prove that
\[
 G(\nu) = -\nu^T b + l^T (A^T \nu + c)^+ - u^T (A^T \nu + c)^-
\]
and deduce that the dual program is the unconstrained problem
\[
 \text{maximize} \quad -\nu^T b + l^T (A^T \nu + c)^+ - u^T (A^T \nu + c)^-
\]
with respect to \(\nu \).

Problem B2 (10 pts). Verify the formula
\[
(X^T X + KI_n)^{-1} X^T = X^T (XX^T + KI_m)^{-1},
\]
where \(X \) is a real \(m \times n \) matrix and \(K > 0 \). You may assume without proof that both \(X^T X + KI_n \) and \(XX^T + KI_m \) are invertible (because they are symmetric positive definite).

Problem B3 (40 pts). Recall that elastic net regression is the following optimization problem:

Program (elastic net):
\[
\begin{align*}
 \text{minimize} & \quad \frac{1}{2} \xi^T \xi + \frac{1}{2} Kw^T w + \tau 1_n^T \epsilon \\
 \text{subject to} & \quad y - Xw - b1_m = \xi \\
 & \quad w \leq \epsilon \\
 & \quad -w \leq \epsilon,
\end{align*}
\]
with X an $m \times n$ matrix, $y, \xi \in \mathbb{R}^m$, $w, \epsilon \in \mathbb{R}^n$, $b \in \mathbb{R}$, where $K > 0$ and $\tau \geq 0$ are two constants controlling the influence of the ℓ^2-regularization and the ℓ^1-regularization.

The Lagrangian associated with this optimization problem is

$$L(\xi, w, \epsilon, b, \lambda, \alpha_+, \alpha_-) = \frac{1}{2} \xi^\top \xi - \xi^\top \lambda + \lambda^\top y - b1_m^\top \lambda + \epsilon^\top (\tau 1_n - \alpha_+ - \alpha_-) + w^\top (\alpha_+ - \alpha_- - X^\top \lambda) + \frac{1}{2} Kw^\top w,$$

with $\lambda \in \mathbb{R}^m$ and $\alpha_+, \alpha_- \in \mathbb{R}^n_+$.

(1) (5 points) Prove that the gradient $\nabla L_{\xi, w, \epsilon, b}$ of the above Lagrangian is given by

$$
\begin{pmatrix}
\xi - \lambda \\
Kw + (\alpha_+ - \alpha_- - X^\top \lambda) \\
\tau 1_n - \alpha_+ - \alpha_- \\
-1_m^\top \lambda
\end{pmatrix}.
$$

(2) (10 points) By setting the gradient $\nabla L_{\xi, w, \epsilon, b}$ to zero we obtain the equations

$$
\begin{align*}
\xi &= \lambda \\
Kw &= -(\alpha_+ - \alpha_- - X^\top \lambda) \\
\alpha_+ + \alpha_- - \tau 1_n &= 0 \\
1_m^\top \lambda &= 0.
\end{align*}
$$

We find that $(*_w)$ determines w.

It is more convenient to write $\lambda = \lambda_+ - \lambda_-$, with $\lambda_+, \lambda_- \in \mathbb{R}^m_+$ (recall that $\alpha_+, \alpha_- \in \mathbb{R}^n_+$), and to rescale our variables by defining $\beta_+, \beta_-, \mu_+, \mu_-$ such that

$$
\alpha_+ = K\beta_+, \quad \alpha_- = K\beta_-, \quad \lambda_+ = K\mu_+, \quad \lambda_- = K\mu_-.
$$

We also let $\mu = \mu_+ - \mu_-$ so that $\lambda = K\mu$.

Prove that

$$
w = -(\beta_+ - \beta_- - X^\top \mu) = (-I_n \quad I_n \quad X^\top \quad -X^\top) \begin{pmatrix} \beta_+ \\ \beta_- \\ \mu_+ \\ \mu_- \end{pmatrix}.$$

Use the above result to prove that

$$
\frac{1}{2} w^\top w = \frac{1}{2} \begin{pmatrix} \beta_+^\top & \beta_-^\top & \mu_+^\top & \mu_-^\top \end{pmatrix} Q \begin{pmatrix} \beta_+ \\ \beta_- \\ \mu_+ \\ \mu_- \end{pmatrix},
$$
with Q the symmetric positive semidefinite matrix

$$Q = \begin{pmatrix} I_n & -I_n & -X^\top & X^\top \\ -I_n & I_n & X^\top & -X^\top \\ -X & X & XX^\top & -XX^\top \\ X & -X & -XX^\top & XX^\top \end{pmatrix}.$$

(3) (10 points) Prove that the dual function is given by

$$G(\mu, \beta_+, \beta_-) = \frac{1}{2} \xi^\top \xi - \xi^\top \lambda + \lambda^\top y + w^\top (\alpha_+ - \alpha_- - X^\top \lambda) + \frac{1}{2} Kw^\top w$$

$$= -\frac{1}{2} K^2 \mu^\top \mu - \frac{1}{2} Kw^\top w + Ky^\top \mu.$$

Hint. Use $(*)_w$.

(4) (15 points) Prove that

$$\frac{1}{2} \mu^\top \mu = \frac{1}{2} \left(\begin{array}{c} \mu^+_\top \\ \mu^-_\top \end{array} \right) \left(\begin{array}{cc} I_m & -I_m \\ -I_m & I_m \end{array} \right) \left(\begin{array}{c} \mu^+_\top \\ \mu^-_\top \end{array} \right).$$

Using (2) to rewrite $\frac{1}{2} w^\top w$, (4) to rewrite $\frac{1}{2} \mu^\top \mu$, and (3), prove that

$$G(\beta_+, \beta_-, \mu_+, \mu_-) = -\frac{1}{2} K \left(\begin{array}{cccc} \beta^+_\top & \beta^-_\top & \mu^+_\top & \mu^-_\top \end{array} \right) P \left(\begin{array}{c} \beta^+_\top \\ \beta^-_\top \\ \mu^+_\top \\ \mu^-_\top \end{array} \right) - K q^\top \left(\begin{array}{c} \beta^+_\top \\ \beta^-_\top \\ \mu^+_\top \\ \mu^-_\top \end{array} \right)$$

with

$$P = Q + K \begin{pmatrix} 0_{n,n} & 0_{n,n} & 0_{n,m} & 0_{n,m} \\ 0_{n,n} & 0_{n,n} & 0_{n,m} & 0_{n,m} \\ 0_{m,n} & 0_{m,n} & I_m & -I_m \\ 0_{m,n} & 0_{m,n} & -I_m & I_m \end{pmatrix}$$

$$= \begin{pmatrix} I_n & -I_n & -X^\top & X^\top \\ -I_n & I_n & X^\top & -X^\top \\ -X & X & XX^\top + KI_m & -XX^\top - KI_m \\ X & -X & -XX^\top - KI_m & XX^\top + KI_m \end{pmatrix},$$

and

$$q = \begin{pmatrix} 0_n \\ 0_n \\ -y \\ y \end{pmatrix}.$$

Problem B4 (Extra credit 50 pts). Recall the n^2 matrices $E_{i,j}$ having the entry 1 in position (i, j) and 0 everywhere else form a basis of $M_n(\mathbb{R})$.

4
(1) Prove that
\[d \det_A(AE_{i,j}) = \delta_{i,j} \det(A) \]
for all \(A \in M_n(\mathbb{R}) \).

Hint. Use HW6, Problem B4(4), which states
\[d \det_A(H) = \sum_{k=1}^{n} \det(A^1, \ldots, A^{k-1}, H^k, A^{k+1}, \ldots, A^n), \]
for all \(A, H \in M_n(\mathbb{R}) \), where \(A^1, \ldots, A^n \) are the columns of \(A \) and \(H^1, \ldots, H^n \) are the columns of \(H \).

(2) Prove that for any two matrices \(A, B \in M_n(\mathbb{R}) \),
\[d \det_A(AB) = \det(A) \text{tr}(B). \]

Assuming that \(A \) is invertible, prove (again) that
\[d \det_A(H) = \det(A) \text{tr}(A^{-1}H) = \text{tr}(\tilde{A}H) \]
for all \(H \in M_n(\mathbb{R}) \).

(3) It can be shown that for any SPD matrix \(A \), the second derivative of \(f = \log \det \) is given by
\[D^2 f_A(X_1, X_2) = -\text{tr}(A^{-1}X_1 A^{-1}X_2), \]
for all \(X_1, X_2 \in M_n(\mathbb{R}) \). It is immediately verified that \(D^2 f_A \) is bilinear symmetric on \(M_n(\mathbb{R}) \times M_n(\mathbb{R}) \).

Prove that if \(A \) is SPD and \(X \) is symmetric, then \((A^{-1}X)^2 \) has nonnegative eigenvalues. Conclude that if \(A \) is SPD and \(X \) is symmetric, then
\[D^2 f_A(X, X) < 0 \]
if \(X \neq 0 \).

Remark: This means that \(D^2 f_A \) is strictly concave on symmetric matrices (with \(A \) SPD).

TOTAL: 100 points + 50 extra credit.