
Appendix A

Rayleigh Ratios and the
Courant-Fischer Theorem

The most important property of symmetric matrices is
that they have real eigenvalues and that they can be di-
agonalized with respect to an orthogonal matrix.

Thus, if A is an n ⇥ n symmetric matrix, then it has n
real eigenvalues �

1

, . . . , �n (not necessarily distinct), and
there is an orthonormal basis of eigenvectors (u

1

, . . . , un)
(for a proof, see Gallier [6]).

211



212 APPENDIX A. RAYLEIGH RATIOS AND THE COURANT-FISCHER THEOREM

Another fact that is used frequently in optimization prob-
lem is that the eigenvalues of a symmetric matrix are
characterized in terms of what is known as the Rayleigh
ratio, defined by

R(A)(x) =
x>Ax

x>x
, x 2 Rn, x 6= 0.

The following proposition is often used to prove the cor-
rectness of various optimization or approximation prob-
lems (for example PCA).
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Proposition A.1. (Rayleigh–Ritz) If A is a symmet-
ric n ⇥ n matrix with eigenvalues �

1

 �
2

 · · ·  �n

and if (u
1

, . . . , un) is any orthonormal basis of eigen-
vectors of A, where ui is a unit eigenvector associated
with �i, then

max
x 6=0

x>Ax

x>x
= �n

(with the maximum attained for x = un), and

max
x 6=0,x2{un�k+1

,...,un}?

x>Ax

x>x
= �n�k

(with the maximum attained for x = un�k), where
1  k  n � 1.

Equivalently, if Vk is the subspace spanned by
(u

1

, . . . , uk), then

�k = max
x 6=0,x2Vk

x>Ax

x>x
, k = 1, . . . , n.
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For our purposes, we also need the version of Proposition
A.1 applying to min instead of max.

Proposition A.2. (Rayleigh–Ritz) If A is a symmet-
ric n ⇥ n matrix with eigenvalues �

1

 �
2

 · · ·  �n

and if (u
1

, . . . , un) is any orthonormal basis of eigen-
vectors of A, where ui is a unit eigenvector associated
with �i, then

min
x 6=0

x>Ax

x>x
= �

1

(with the minimum attained for x = u
1

), and

min
x 6=0,x2{u

1

,...,ui�1

}?

x>Ax

x>x
= �i

(with the minimum attained for x = ui), where 2 
i  n.

Equivalently, if Wk = V ?
k�1

denotes the subspace spanned
by (uk, . . . , un) (with V

0

= (0)), then

�k = min
x 6=0,x2Wk

x>Ax

x>x
= min

x 6=0,x2V ?
k�1

x>Ax

x>x
, k = 1, . . . , n.
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Propositions A.1 and A.2 together are known as the
Rayleigh–Ritz theorem .

As an application of Propositions A.1 and A.2, we give
a proof of a proposition which is the key to the proof of
Theorem 2.2.

Given an n ⇥ n symmetric matrix A and an m ⇥ m
symmetric B, with m  n, if �

1

 �
2

 · · ·  �n are
the eigenvalues of A and µ

1

 µ
2

 · · ·  µm are the
eigenvalues of B, then we say that the eigenvalues of B
interlace the eigenvalues of A if

�i  µi  �n�m+i, i = 1, . . . , m.

The following proposition is known as the Poincaré sep-
aration theorem .
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Proposition A.3. Let A be an n⇥ n symmetric ma-
trix, R be an n ⇥ m matrix such that R>R = I (with
m  n), and let B = R>AR (an m⇥m matrix). The
following properties hold:

(a) The eigenvalues of B interlace the eigenvalues of
A.

(b) If �
1

 �
2

 · · ·  �n are the eigenvalues of A and
µ

1

 µ
2

 · · ·  µm are the eigenvalues of B, and
if �i = µi, then there is an eigenvector v of B with
eigenvalue µi such that Rv is an eigenvector of A
with eigenvalue �i.

Observe that Proposition A.3 implies that

�
1

+ · · · + �m  tr(R>AR)  �n�m+1

+ · · · + �n.

The left inequality is used to prove Theorem 2.2.
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For the sake of completeness, we also prove the Courant–
Fischer characterization of the eigenvalues of a symmetric
matrix.

Theorem A.4. (Courant–Fischer) Let A be a sym-
metric n⇥n matrix with eigenvalues �

1

 �
2

 · · · 
�n and let (u

1

, . . . , un) be any orthonormal basis of
eigenvectors of A, where ui is a unit eigenvector as-
sociated with �i. If Vk denotes the set of subspaces of
Rn of dimension k, then

�k = max
W2Vn�k+1

min
x2W,x6=0

x>Ax

x>x

�k = min
W2Vk

max
x2W,x6=0

x>Ax

x>x
.
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