
Chapter 18

Spectral Graph Drawing

18.1 Graph Drawing and Energy Minimization

Let G = (V, E) be some undirected graph. It is often de-
sirable to draw a graph, usually in the plane but possibly
in 3D, and it turns out that the graph Laplacian can be
used to design surprisingly good methods.

Say |V | = m. The idea is to assign a point ⇢(vi) in Rn to
the vertex vi 2 V , for every vi 2 V , and to draw a line
segment between the points ⇢(vi) and ⇢(vj).

Thus, a graph drawing is a function ⇢ : V ! Rn.
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822 CHAPTER 18. SPECTRAL GRAPH DRAWING

We define the matrix of a graph drawing ⇢ (in Rn) as a
m⇥n matrix R whose ith row consists of the row vector
⇢(vi) corresponding to the point representing vi in Rn.

Typically, we want n < m; in fact n should be much
smaller than m.

A representation is balanced i↵ the sum of the entries of
every column is zero, that is,

1>R = 0.

If a representation is not balanced, it can be made bal-
anced by a suitable translation.

We may also assume that the columns of R are linearly
independent, since any basis of the column space also
determines the drawing. Thus, from now on, we may
assume that n  m.
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Remark: A graph drawing ⇢ : V ! Rn is not required
to be injective, which may result in degenerate drawings
where distinct vertices are drawn as the same point.

For this reason, we prefer not to use the terminology
graph embedding , which is often used in the literature.
This is because in di↵erential geometry, an embedding
always refers to an injective map.

The term graph immersion would be more appropriate.

As explained in Godsil and Royle [17], we can imagine
building a physical model of G by connecting adjacent
vertices (in Rn) by identical springs.

Then, it is natural to consider a representation to be
better if it requires the springs to be less extended.
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We can formalize this by defining the energy of a drawing
R by

E(R) =
X

{vi,vj}2E

k⇢(vi) � ⇢(vj)k2 ,

where ⇢(vi) is the ith row of R and k⇢(vi) � ⇢(vj)k2 is
the square of the Euclidean length of the line segment
joining ⇢(vi) and ⇢(vj).

Then, “good drawings” are drawings that minimize the
energy function E .

Of course, the trivial representation corresponding to the
zero matrix is optimum, so we need to impose extra con-
straints to rule out the trivial solution.



18.1. GRAPH DRAWING AND ENERGY MINIMIZATION 825

We can consider the more general situation where the
springs are not necessarily identical. This can be modeled
by a symmetric weight (or sti↵ness) matrix W = (wij),
with wij � 0.

Then our energy function becomes

E(R) =
X

{vi,vj}2E

wij k⇢(vi) � ⇢(vj)k2 .

It turns out that this function can be expressed in terms
of the Laplacian L = D � W .

Proposition 18.1. Let G = (V, W ) be a weighted
graph, with |V | = m and W an m ⇥ m symmetric
matrix, and let R be the matrix of a graph drawing ⇢
of G in Rn (a m⇥n matrix). If L = D�W is the un-
normalized Laplacian matrix associated with W , then

E(R) = tr(R>LR).
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Since the matrix R>LR is symmetric, it has real eigen-
values. Actually, since L is positive semidefinite, so is
R>LR.

Then, the trace of R>LR is equal to the sum of its posi-
tive eigenvalues, and this is the energy E(R) of the graph
drawing.

If R is the matrix of a graph drawing in Rn, then for any
invertible matrix M , the map that assigns ⇢(vi)M to vi

is another graph drawing of G, and these two drawings
convey the same amount of information.

From this point of view, a graph drawing is determined
by the column space of R. Therefore, it is reasonable to
assume that the columns of R are pairwise orthogonal
and that they have unit length.

Such a matrix satisfies the equation R>R = I , and the
corresponding drawing is called an orthogonal drawing .
This condition also rules out trivial drawings.
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The following result tells us how to find minimum energy
graph drawings, provided the graph is connected.

Theorem 18.2. Let G = (V, W ) be a weigted graph
with |V | = m. If L = D � W is the (unnormal-
ized) Laplacian of G, and if the eigenvalues of L are
0 = �1 < �2  �3  . . .  �m, then the minimal en-
ergy of any balanced orthogonal graph drawing of G
in Rn is equal to �2 + · · · + �n+1 (in particular, this
implies that n < m). The m ⇥ n matrix R consisting
of any unit eigenvectors u2, . . . , un+1 associated with
�2  . . .  �n+1 yields a balanced orthogonal graph
drawing of minimal energy; it satisfies the condition
R>R = I.

Observe that for any orthogonal n ⇥ n matrix Q, since

tr(R>LR) = tr(Q>R>LRQ),

the matrix RQ also yields a minimum orthogonal graph
drawing.

Since 1 spans the nullspace of L, using u1 (which belongs
to KerL) as one of the vectors in R would have the e↵ect
that all points representing vertices of G would have the
same first coordinate.
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This would mean that the drawing lives in a hyperplane
in Rn, which is undesirable, especially when n = 2, where
all vertices would be collinear. This is why we omit the
first eigenvector u1.

In summary, if �2 > 0, an automatic method for drawing
a graph in R2 is this:

1. Compute the two smallest nonzero eigenvalues �2 
�3 of the graph Laplacian L (it is possible that �3 =
�2 if �2 is a multiple eigenvalue);

2. Compute two unit eigenvectors u2, u3 associated with
�2 and �3, and let R = [u2 u3] be the m ⇥ 2 matrix
having u2 and u3 as columns.

3. Place vertex vi at the point whose coordinates is the
ith row of R, that is, (Ri1, Ri2).

This method generally gives pleasing results, but beware
that there is no guarantee that distinct nodes are assigned
distinct images, because R can have identical rows.
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18.2 Examples of Graph Drawings

We now give a number of examples using Matlab. Some
of these are borrowed or adapted from Spielman [?].

Example 1. Consider the graph with four nodes whose
adjacency matrix is

A =

0

BB@

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

1

CCA .

We use the following program to compute u2 and u3:

A = [0 1 1 0; 1 0 0 1; 1 0 0 1; 0 1 1 0];

D = diag(sum(A));

L = D - A;

[v, e] = eigs(L);

gplot(A, v(:,[3 2]))

hold on;

gplot(A, v(:,[3 2]),’o’)

The graph of Example 1 is shown in Figure 18.1. It turns
out that �2 = �3 = 2 is a double eigenvalue.
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Figure 18.1: Drawing of the graph from Example 1.

Example 2. Consider the graph G2 shown in Figure 17.2
given by the adjacency matrix

A =

0

BBBB@

0 1 1 0 0
1 0 1 1 1
1 1 0 1 0
0 1 1 0 1
0 1 0 1 0

1

CCCCA
.

We use the following program to compute u2 and u3:
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A = [0 1 1 0 0; 1 0 1 1 1; 1 1 0 1 0;

0 1 1 0 1; 0 1 0 1 0];

D = diag(sum(A));

L = D - A;

[v, e] = eig(L);

gplot(A, v(:, [2 3]))

hold on

gplot(A, v(:, [2 3]),’o’)

Note that node v2 is assigned to the point (0, 0), so the
di↵erence between this drawing and the drawing in Figure
17.2 is that the drawing of Figure 18.2 is not convex.
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Figure 18.2: Drawing of the graph from Example 2.
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Example 3. Consider the ring graph defined by the ad-
jacency matrix A given in the Matlab program shown
below:

A = diag(ones(1, 11),1);

A = A + A’;

A(1, 12) = 1; A(12, 1) = 1;

D = diag(sum(A));

L = D - A;

[v, e] = eig(L);

gplot(A, v(:, [2 3]))

hold on

gplot(A, v(:, [2 3]),’o’)
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Figure 18.3: Drawing of the graph from Example 3.

Again �2 = 0.2679 is a double eigenvalue (and so are the
next pairs of eigenvalues, except the last, �12 = 4).
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Example 4. In this example adpated from Spielman, we
generate 20 randomly chosen points in the unit square,
compute their Delaunay triangulation, then the adjacency
matrix of the corresponding graph, and finally draw the
graph using the second and third eigenvalues of the Lapla-
cian.

A = zeros(20,20);

xy = rand(20, 2);

trigs = delaunay(xy(:,1), xy(:,2));

elemtrig = ones(3) - eye(3);

for i = 1:length(trigs),

A(trigs(i,:),trigs(i,:)) = elemtrig;

end

A = double(A >0);

gplot(A,xy)

D = diag(sum(A));

L = D - A;

[v, e] = eigs(L, 3, ’sm’);

figure(2)

gplot(A, v(:, [2 1]))

hold on

gplot(A, v(:, [2 1]),’o’)
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The Delaunay triangulation of the set of 20 points and the
drawing of the corresponding graph are shown in Figure
18.4.

The graph drawing on the right looks nicer than the graph
on the left but is is no longer planar.
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Figure 18.4: Delaunay triangulation (left) and drawing of the graph from Example 4 (right).
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Example 5. Our last example, also borrowed from Spiel-
man [?], corresponds to the skeleton of the “Buckyball,”
a geodesic dome invented by the architect Richard Buck-
minster Fuller (1895–1983).

The Montréal Biosphère is an example of a geodesic dome
designed by Buckminster Fuller.

A = full(bucky);

D = diag(sum(A));

L = D - A;

[v, e] = eig(L);

gplot(A, v(:, [2 3]))

hold on;

gplot(A,v(:, [2 3]), ’o’)

Figure 18.5 shows a graph drawing of the Buckyball. This
picture seems a bit squashed for two reasons. First, it is
really a 3-dimensional graph; second, �2 = 0.2434 is a
triple eigenvalue. (Actually, the Laplacian of L has many
multiple eigenvalues.) What we should really do is to plot
this graph in R3 using three orthonormal eigenvectors
associated with �2.
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Figure 18.5: Drawing of the graph of the Buckyball.

A 3D picture of the graph of the Buckyball is produced
by the following Matlab program, and its image is shown
in Figure 18.6. It looks better!

[x, y] = gplot(A, v(:, [2 3]));

[x, z] = gplot(A, v(:, [2 4]));

plot3(x,y,z)
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Figure 18.6: Drawing of the graph of the Buckyball in R3.
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