Chapter 9

Spectral Theorems in Euclidean and
Hermitian Spaces

9.1 Normal Linear Maps

Let E be a real Euclidean space (or a complex Hermitian
space) with inner product u, v — (u, v).

In the real Euclidean case, recall that (—, —) is bilinear,
symmetric and positive definite (i.e., {(u,u) > 0 for all

u # 0).

In the complex Hermitian case, recall that (—, —) is
sesquilinear, which means that it linear in the first argu-
ment, semilinear in the second argument (i.e.,

(u, pvy = w{u,v)), (v,u) = (u,v), and positive definite
(as above).
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In both cases we let ||u|| = \/{u,u) and the map
u — ||ul| is a norm.

Recall that every linear map, f: £ — E, has an adjoint
f* which is a linear map, f*: E — FE, such that

(flu),v) = (u, f*(v)),

for all u,v € E.

Since (—, —) is symmetric, it is obvious that f** = f.

Definition 9.1. Given a Euclidean (or Hermitian) space,
FE, alinear map f: £ — FE is normal ift

fof"=[ o
A linear map f: E — E is self-adjoint it f = f*, skew-
self-adjoint if f = —f*, and orthogonal if
fof=fof=id
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Our first goal is to show that for every normal linear map
f: E — E (where E is a Euclidean space), there is an
orthonormal basis (w.rt. (—, —)) such that the matrix
of f over this basis has an especially nice form:

It is a block diagonal matriz in which the blocks are ei-
ther one-dimensional matrices (i.e., single entries) or two-
dimensional matrices of the form

A p
—1 A

This normal form can be further refined it f is self-adjoint,
skew-self-adjoint, or orthogonal.

As a first step, we show that f and f* have the same
kernel when f is normal.

Proposition 9.1. Giwen a Euclidean space E, if

f: E— E is a normal linear map, then
Ker f = Ker f*.
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The next step is to show that for every linear map
f: E — E. there is some subspace W of dimension 1 or

2 such that f(W) C W.

When dim(W) = 1, W is actually an eigenspace for some
real eigenvalue of f.

Furthermore, when f is normal, there is a subspace W of

dimension 1 or 2 such that f(W) C W and f*(W) C W.

The difficulty is that the eigenvalues of f are not nec-
essarily real. One way to get around this problem is to
complexify both the vector space F/ and the inner prod-
uct (—, —).

First, we need to embed a real vector space E into a
complex vector space E¢.
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Definition 9.2. Given a real vector space E. let E¢ be
the structure £/ x E under the addition operation

(w1, ug) + (v1, v9) = (uy + vy, us + Vo),

and multiplication by a complex scalar z = x+1y defined
such that

(@ +1y) - (u, v) = (2u — yv, yu + av).
The space E¢ is called the complezification of E.

[t is easily shown that the structure Ec is a complex
vector space.

It is also immediate that
(0, v) = i(v, 0),

and thus, identifying E with the subspace of E¢ consist-
ing of all vectors of the form (u, 0), we can write

(u, v) = u + .

Given a vector w = u + v, its conjugate w is the vector
W= U —10.
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Observe that if (eq1,...,e,) is a basis of E' (a real vector
space), then (e, ..., e,) is also a basis of E¢ (recall that
e; is an abreviation for (e;, 0)).

Given a linear map f: £ — FE, the map f can be ex-
tended to a linear map fc: Ec — E¢ defined such that

fe(u+w) = flu) +if(v).

For any basis (e1,...,e,) of E, the matrix M(f) rep-

resenting f over (eg,...,e,) is identical to the matrix
M ( fc) representing fc over (eg,...,e,), where we view
(é1,...,€e,) as a basis of Fg.

As a consequence, det(z] — M(f)) = det(zl — M(fc)),
which means that f and fc have the same character-
istic polynomial (which has real coefficients).

We know that every polynomial of degree n with real (or
complex) coefficients always has n complex roots (counted

with their multiplicity), and the roots of det(zI — M ( fc))
that are real (if any) are the eigenvalues of f.
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Next, we need to extend the inner product on E to an
inner product on Eg.

The inner product (—, —) on a Euclidean space E is ex-
tended to the Hermitian positive definite form (—, —)¢
on E¢ as follows:

<U1 + iUl, U9 + ’i02>(c
= (uy, uz) + (v, vo) + i({ug, v1) — (U, v9)).

Then, given any linear map f: E — FE, it is easily verified
that the map f¢ defined such that

felu+iv) = fH(u) +if*(v)

for all u,v € E, is the adjoint of fc w.rt. (—, —)c.



368 CHAPTER 9. SPECTRAL THEOREMS

Assuming again that E' is a Hermitian space, observe that
Proposition 9.1 also holds.

Proposition 9.2. Gwen a Hermitian space E, for
any normal linear map f: E — FE, a vector u s an
eigenvector of f for the eigenvalue A (in C) iff u is
an eigenvector of f* for the eigenvalue ).

The next proposition shows a very important property of
normal linear maps: eigenvectors corresponding to dis-
tinct eigenvalues are orthogonal.

Proposition 9.3. Giwen a Hermitian space E, for
any normal linear map f: E — E, if u and v are

eigenvectors of [ associated with the eigenvalues \
and p (in C) where X\ # u, then {(u,v) = 0.
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We can also show easily that the eigenvalues of a self-
adjoint linear map are real.

Proposition 9.4. Gwen a Hermitian space E, the
ergenvalues of any self-adjoint linear map f: £ — E
are real.

There is also a version of Proposition 9.4 for a (real) Eu-
clidean space E and a self-adjoint map f: £ — F.

Proposition 9.5. Given a Fuclidean space F,

of £ B — E is any self-adjoint linear map, then every
ergenvalue of fc is real and is actually an eigenvalue
of f. Therefore, all the eigenvalues of f are real.

Given any subspace W of a Hermitian space E, recall
that the orthogonal W+ of W is the subspace defined
such that

W+={ue€FE| {uw)=0,foralwecW}.
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Recall that E = W @ W+ (construct an orthonormal ba-
sis of E using the Gram—Schmidt orthonormalization pro-
cedure). The same result also holds for Euclidean spaces.

As a warm up for the proof of Theorem 9.9, let us prove
that every self-adjoint map on a Euclidean space can
be diagonalized with respect to an orthonormal basis of
elgenvectors.

Theorem 9.6. Given a Euclidean space E of dimen-
sion n, for every self-adjoint linear map f: £ — F,
there is an orthonormal basis (ey, ..., e,) of eigenvec-
tors of f such that the matriz of f w.r.t. this basis is
a diagonal matriz

Ay ..

with \; € R.
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One of the key points in the proof of Theorem 9.6 is that

we found a subspace W with the property that
f(W) C W implies that f(W+) C W+,

In general, this does not happen, but normal maps satisfy
a stronger property which ensures that such a subspace
exists.

The following proposition provides a condition that will
allow us to show that a normal linear map can be diago-
nalized. It actually holds for any linear map.

Proposition 9.7. Giwen a Hermitian space E, for
any linear map f: E — E, if W s any subspace of &
such that f(W) C W and f*(W) C W, then f(W+) C
W+ and f*(W+) C W+,

The above Proposition also holds for Euclidean spaces.
Although we are ready to prove that for every normal
linear map f (over a Hermitian space) there is an or-
thonormal basis of eigenvectors, we now return to real
Euclidean spaces.
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If f: E — FE is a linear map and w = w + v is an
eigenvector of fc: Ec — E¢ for the eigenvalue
2= A+1u, where u,v € E and A\, u € R, since

felu+iv) = flu) +if(v)

and

foelu +iv) = (A +ip)(u + iv)
= \u — pv + i(pu + Av),

we have

fu)=Au—pv and f(v) = pu+ v,

from which we immediately obtain
felu —iv) = (A —ip)(u — v),

which shows that w = u — v is an eigenvector of f¢ for
z = A —iu. Using this fact, we can prove the following
proposition:
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Proposition 9.8. Given a Euclidean space E, for any
normal linear map f: E — E, if w = u+ v 15 an
ergenvector of fc associated with the eigenvalue

2= A+iu (where u,v € E and \,u € R), if u # 0
(i.e., z is not real) then (u,v) =0 and (u,u) = (v, v),
whach implies that w and v are linearly independent,
and if W 1is the subspace spanned by u and v, then
fW) =W and f*(W) =W. Furthermore, with re-
spect to the (orthogonal) basis (u,v), the restriction of
f to W has the matrix

(24):

If £ =20, then X 1s a real eigenvalue of f and either u
or v is an eigenvector of f for A. If W 1s the subspace
spanned by u if u # 0, or spanned by v # 0 if u = 0,
then f(W) C W and f*(W) C W.
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Theorem 9.9. (Main Spectral Theorem ) Given a Fu-
clidean space E of dimension n, for every normal lin-
ear map f: E — FE, there is an orthonormal basis
(é1,-..,en) such that the matriz of f w.r.t. this basis
1 a block diagonal matrix of the form

Ay ...
A,

such that each block A; is either a one-dimensional
matriz (i.e., a real scalar) or a two-dimensional ma-

triz of the form
Yy
A = [ J
! (Mj Aj )

where A;, 1 € R, with p; > 0.
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After this relatively hard work, we can easily obtain some
nice normal forms for the matrices of self-adjoint, skew-
self-adjoint, and orthogonal, linear maps.

However, for the sake of completeness, we state the fol-
lowing theorem.

Theorem 9.10. Given a Hermitian space E of di-
mension n, for every normal linear map f: E — FE,
there is an orthonormal basis (ey, ..., e,) of eigenvec-
tors of f such that the matrixz of f w.r.t. this basis 1s

a diagonal matriz

where \; € C.

Remark: Thereis a converse to Theorem 9.10, namely, if
there is an orthonormal basis (eq, . .., e,) of eigenvectors
of f, then f is normal.
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9.2 Self-Adjoint, Skew-Self-Adjoint, and Orthogonal Lin-
ear Maps

Theorem 9.11. Given a Fuclidean space E of dimen-
sion n, for every self-adjoint linear map

f: E — E, there is an orthonormal basis (e, ..., e,)
of eigenvectors of f such that the matrix of f w.r.t.
this basis is a diagonal matriz

Ay ..

where \; € R.

Theorem 9.11 implies that if A\j,..., A\, are the distinct
real eigenvalues of f and FEj; is the eigenspace associated
with A;, then

E:El@"'@Epv

where E; and E; are othogonal for all 7 # 7.
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Theorem 9.12. Given a Euclidean space E of dimen-
sion n, for every skew-self-adjoint linear map

f: E — E, there is an orthonormal basis (e, ..., €e,)
such that the matrix of f w.r.t. this basis is a block
diagonal matriz of the form

Ay ...
A,

such that each block Aj 18 either O or a two-dimensional
matrix of the form

where p; € R, with p; > 0. In particular, the eigen-
values of fc are pure imaginary of the form xip;, or
0.
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Theorem 9.13. Given a Euclidean space E of dimen-
sion n, for every orthogonal linear map

f: E — E, there is an orthonormal basis (e, ..., €e,)
such that the matrix of f w.r.t. this basis is a block
diagonal matriz of the form

Ay ...
A,

such that each block A; 1is either 1, —1, or a two-
dimensional matrixz of the form

A = <COS 0; —sin 9]-)

sin (9j COS Qj

where 0 < 0; < .

In particular, the eigenvalues of fc are of the form
cos; £isinb;, or 1, or —1.
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It is obvious that we can reorder the orthonormal basis of
eigenvectors given by Theorem 9.13, so that the matrix of
f w.r.t. this basis is a block diagonal matrix of the form

(A

A

Y

where each block A; is a two-dimensional rotation matrix

A; # 1 of the form

A cost; —sinb;
7 \sin6; cosb,

with 0 < 0, < .

The linear map f has an eigenspace E(1, f) = Ker (f — id)
of dimension p for the eigenvalue 1, and an eigenspace
E(—1,f) = Ker(f +id) of dimension ¢ for the eigen-
value —1.
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If det(f) = +1 (f is a rotation), the dimension ¢ of
E(—1, f) must be even, and the entries in —1, can be
paired to form two-dimensional blocks, if we wish.

Remark: Theorem 9.13 can be used to prove a sharper
version of the Cartan-Dieudonné Theorem.

Theorem 9.14. Let E be a Euclidean space of di-
mension n > 2. For every isometry f € O(F), if
p = dim(E(1, f)) = dim(Ker (f —id)), then f is the

composition of n —p reflections and n — p 1s minimal.

The theorems of this section and of the previous section
can be immediately applied to matrices.
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9.3 Normal, Symmetric, Skew-Symmetric, Orthogonal,
Hermitian, Skew-Hermitian, and Unitary Matrices

First, we consider real matrices.

Definition 9.3. Given a real m xn matrix A, the trans-
pose A" of Ais the n x m matrix A" = (a;;) defined

such that

T
0]
forall 7,7, 1 <1 <m,1 <75 <n. Areal n X n matrix
A is

a :CLj@'

1. normal ift
AA"=A"A,
2. symmetric ift

Al =A

I

3. skew-symmetric ift

AT=-A

4. orthogonal ift
AA"'=A"A=1,.
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Theorem 9.15. For every normal matrix A, there is

an orthogonal matrix P and a block diagonal matrix
D such that A= PD P, where D is of the form

such that each block Dj s either a one-dimensional
matriz (i.e., a real scalar) or a two-dimensional ma-

trixz of the form
p PRy
D= (7Y J
! (Mj Aj )

where A;, p; € R, with p; > 0.
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Theorem 9.16. For every symmetric matrix A, there

1s an orthogonal matrix P and a diagonal matriz D
such that A= PD P, where D is of the form

where \; € R.
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Theorem 9.17. For every skew-symmetric matrixz A,
there is an orthogonal matriz P and a block diagonal

matriz D such that A = PD P', where D is of the
form

such that each block D; s either 0 or a two-dimensional
matriz of the form

0 —u;
D. — J
! (u; 0 )

where p; € R, with p; > 0. In particular, the eigen-

values of A are pure itmaginary of the form xip;, or
0.
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Theorem 9.18. For every orthogonal matrixz A, there

18 an orthogonal matrix P and a block diagonal matrix
D such that A= PD P, where D is of the form

such that each block D; s either 1, —1, or a two-
dimensional matrixz of the form

D, — (COS 0; —sin 9j>

sin (9j COS Gj

where 0 < 0; < .

In particular, the eigenvalues of A are of the form
cosf); = esinf;, or 1, or —1.

We now consider complex matrices.
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Definition 9.4. Given a complex m X n matrix A, the
transpose A' of A is the n x m matrix A" = (a,)

iJ
defined such that
-
ij B
forall 4,7, 1 <i<m,1<j <n. The conjugate A of
A is the m x n matrix A = (b;;) defined such that

a :CLjZ'

bij = ai;

forall 2,7, 1 <7 <m,1 <35 <n Givenann Xn
complex matrix A, the adjoint A* of A is the matrix
defined such that

A= (AT) = (A"

A complex n X n matrix A is

1. normal ift

AA* = A*A,

2. Hermitian ift

A=A

Y

3. skew-Hermaitian ift

A =—A

?

4. unitary iff
AA*=A"A=1,.
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Theorem 9.10 can be restated in terms of matrices as
follows. We can also say a little more about eigenvalues
(easy exercise left to the reader).

Theorem 9.19. For every complex normal matriz A,
there is a unitary matrix U and a diagonal matriz D
such that A = UDU*. Furthermore, if A is Hermi-
tian, D s a real matriz, if A is skew-Hermaitian, then
the entries in D are pure tmaginary or null, and if A

18 unitary, then the entries in D have absolute value
1.
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