
Chapter 9

Spectral Theorems in Euclidean and
Hermitian Spaces

9.1 Normal Linear Maps

Let E be a real Euclidean space (or a complex Hermitian
space) with inner product u, v �→ �u, v�.

In the real Euclidean case, recall that �−,−� is bilinear,
symmetric and positive definite (i.e., �u, u� > 0 for all
u �= 0).

In the complex Hermitian case, recall that �−,−� is
sesquilinear, which means that it linear in the first argu-
ment, semilinear in the second argument (i.e.,
�u, µv� = µ�u, v�), �v, u� = �u, v�, and positive definite
(as above).
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In both cases we let �u� =
�
�u, u� and the map

u �→ �u� is a norm .

Recall that every linear map, f : E → E, has an adjoint
f ∗ which is a linear map, f ∗ : E → E, such that

�f (u), v� = �u, f ∗(v)�,

for all u, v ∈ E.

Since �−,−� is symmetric, it is obvious that f ∗∗ = f .

Definition 9.1.Given a Euclidean (or Hermitian) space,
E, a linear map f : E → E is normal iff

f ◦ f ∗ = f ∗ ◦ f.

A linear map f : E → E is self-adjoint if f = f ∗, skew-
self-adjoint if f = −f ∗, and orthogonal if
f ◦ f ∗ = f ∗ ◦ f = id.
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Our first goal is to show that for every normal linear map
f : E → E (where E is a Euclidean space), there is an
orthonormal basis (w.r.t. �−,−�) such that the matrix
of f over this basis has an especially nice form:

It is a block diagonal matrix in which the blocks are ei-
ther one-dimensional matrices (i.e., single entries) or two-
dimensional matrices of the form

�
λ µ
−µ λ

�

This normal form can be further refined if f is self-adjoint,
skew-self-adjoint, or orthogonal.

As a first step, we show that f and f ∗ have the same
kernel when f is normal.

Proposition 9.1. Given a Euclidean space E, if
f : E → E is a normal linear map, then
Ker f = Ker f ∗.
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The next step is to show that for every linear map
f : E → E, there is some subspace W of dimension 1 or
2 such that f (W ) ⊆ W .

When dim(W ) = 1, W is actually an eigenspace for some
real eigenvalue of f .

Furthermore, when f is normal, there is a subspace W of
dimension 1 or 2 such that f (W ) ⊆ W and f ∗(W ) ⊆ W .

The difficulty is that the eigenvalues of f are not nec-
essarily real. One way to get around this problem is to
complexify both the vector space E and the inner prod-
uct �−,−�.

First, we need to embed a real vector space E into a
complex vector space EC.
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Definition 9.2. Given a real vector space E, let EC be
the structure E × E under the addition operation

(u1, u2) + (v1, v2) = (u1 + v1, u2 + v2),

and multiplication by a complex scalar z = x+iy defined
such that

(x + iy) · (u, v) = (xu− yv, yu + xv).

The space EC is called the complexification of E.

It is easily shown that the structure EC is a complex
vector space.

It is also immediate that

(0, v) = i(v, 0),

and thus, identifying E with the subspace of EC consist-
ing of all vectors of the form (u, 0), we can write

(u, v) = u + iv.

Given a vector w = u+ iv, its conjugate w is the vector
w = u− iv.
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Observe that if (e1, . . . , en) is a basis of E (a real vector
space), then (e1, . . . , en) is also a basis of EC (recall that
ei is an abreviation for (ei, 0)).

Given a linear map f : E → E, the map f can be ex-
tended to a linear map fC : EC → EC defined such that

fC(u + iv) = f (u) + if (v).

For any basis (e1, . . . , en) of E, the matrix M(f ) rep-
resenting f over (e1, . . . , en) is identical to the matrix
M(fC) representing fC over (e1, . . . , en), where we view
(e1, . . . , en) as a basis of EC.

As a consequence, det(zI −M(f )) = det(zI −M(fC)),
which means that f and fC have the same character-
istic polynomial (which has real coefficients).

We know that every polynomial of degree n with real (or
complex) coefficients always has n complex roots (counted
with their multiplicity), and the roots of det(zI−M(fC))
that are real (if any) are the eigenvalues of f .
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Next, we need to extend the inner product on E to an
inner product on EC.

The inner product �−,−� on a Euclidean space E is ex-
tended to the Hermitian positive definite form �−,−�C
on EC as follows:

�u1 + iv1, u2 + iv2�C
= �u1, u2� + �v1, v2� + i(�u2, v1� − �u1, v2�).

Then, given any linear map f : E → E, it is easily verified
that the map f ∗

C defined such that

f ∗
C(u + iv) = f ∗(u) + if ∗(v)

for all u, v ∈ E, is the adjoint of fC w.r.t. �−,−�C.
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Assuming again that E is a Hermitian space, observe that
Proposition 9.1 also holds.

Proposition 9.2. Given a Hermitian space E, for
any normal linear map f : E → E, a vector u is an
eigenvector of f for the eigenvalue λ (in C) iff u is
an eigenvector of f ∗ for the eigenvalue λ.

The next proposition shows a very important property of
normal linear maps: eigenvectors corresponding to dis-
tinct eigenvalues are orthogonal.

Proposition 9.3. Given a Hermitian space E, for
any normal linear map f : E → E, if u and v are
eigenvectors of f associated with the eigenvalues λ
and µ (in C) where λ �= µ, then �u, v� = 0.
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We can also show easily that the eigenvalues of a self-
adjoint linear map are real.

Proposition 9.4. Given a Hermitian space E, the
eigenvalues of any self-adjoint linear map f : E → E
are real.

There is also a version of Proposition 9.4 for a (real) Eu-
clidean space E and a self-adjoint map f : E → E.

Proposition 9.5. Given a Euclidean space E,
if f : E → E is any self-adjoint linear map, then every
eigenvalue of fC is real and is actually an eigenvalue
of f . Therefore, all the eigenvalues of f are real.

Given any subspace W of a Hermitian space E, recall
that the orthogonal W⊥ of W is the subspace defined
such that

W⊥ = {u ∈ E | �u, w� = 0, for all w ∈ W}.
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Recall that E = W ⊕W⊥ (construct an orthonormal ba-
sis ofE using the Gram–Schmidt orthonormalization pro-
cedure). The same result also holds for Euclidean spaces.

As a warm up for the proof of Theorem 9.9, let us prove
that every self-adjoint map on a Euclidean space can
be diagonalized with respect to an orthonormal basis of
eigenvectors.

Theorem 9.6. Given a Euclidean space E of dimen-
sion n, for every self-adjoint linear map f : E → E,
there is an orthonormal basis (e1, . . . , en) of eigenvec-
tors of f such that the matrix of f w.r.t. this basis is
a diagonal matrix





λ1 . . .
λ2 . . .

... ... . . . ...
. . . λn



 ,

with λi ∈ R.
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One of the key points in the proof of Theorem 9.6 is that
we found a subspace W with the property that
f (W ) ⊆ W implies that f (W⊥) ⊆ W⊥.

In general, this does not happen, but normal maps satisfy
a stronger property which ensures that such a subspace
exists.

The following proposition provides a condition that will
allow us to show that a normal linear map can be diago-
nalized. It actually holds for any linear map.

Proposition 9.7. Given a Hermitian space E, for
any linear map f : E → E, if W is any subspace of E
such that f (W ) ⊆ W and f ∗(W ) ⊆ W , then f (W⊥) ⊆
W⊥ and f ∗(W⊥) ⊆ W⊥.

The above Proposition also holds for Euclidean spaces .
Although we are ready to prove that for every normal
linear map f (over a Hermitian space) there is an or-
thonormal basis of eigenvectors, we now return to real
Euclidean spaces.
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If f : E → E is a linear map and w = u + iv is an
eigenvector of fC : EC → EC for the eigenvalue
z = λ + iµ, where u, v ∈ E and λ, µ ∈ R, since

fC(u + iv) = f (u) + if (v)

and

fC(u + iv) = (λ + iµ)(u + iv)

= λu− µv + i(µu + λv),

we have

f (u) = λu− µv and f (v) = µu + λv,

from which we immediately obtain

fC(u− iv) = (λ− iµ)(u− iv),

which shows that w = u− iv is an eigenvector of fC for
z = λ − iµ. Using this fact, we can prove the following
proposition:
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Proposition 9.8.Given a Euclidean space E, for any
normal linear map f : E → E, if w = u + iv is an
eigenvector of fC associated with the eigenvalue
z = λ + iµ (where u, v ∈ E and λ, µ ∈ R), if µ �= 0
(i.e., z is not real) then �u, v� = 0 and �u, u� = �v, v�,
which implies that u and v are linearly independent,
and if W is the subspace spanned by u and v, then
f (W ) = W and f ∗(W ) = W . Furthermore, with re-
spect to the (orthogonal) basis (u, v), the restriction of
f to W has the matrix

�
λ µ
−µ λ

�
.

If µ = 0, then λ is a real eigenvalue of f and either u
or v is an eigenvector of f for λ. If W is the subspace
spanned by u if u �= 0, or spanned by v �= 0 if u = 0,
then f (W ) ⊆ W and f ∗(W ) ⊆ W .



374 CHAPTER 9. SPECTRAL THEOREMS

Theorem 9.9. (Main Spectral Theorem) Given a Eu-
clidean space E of dimension n, for every normal lin-
ear map f : E → E, there is an orthonormal basis
(e1, . . . , en) such that the matrix of f w.r.t. this basis
is a block diagonal matrix of the form





A1 . . .
A2 . . .

... ... . . . ...
. . . Ap





such that each block Aj is either a one-dimensional
matrix (i.e., a real scalar) or a two-dimensional ma-
trix of the form

Aj =

�
λj −µj

µj λj

�

where λj, µj ∈ R, with µj > 0.
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After this relatively hard work, we can easily obtain some
nice normal forms for the matrices of self-adjoint, skew-
self-adjoint, and orthogonal, linear maps.

However, for the sake of completeness, we state the fol-
lowing theorem.

Theorem 9.10. Given a Hermitian space E of di-
mension n, for every normal linear map f : E → E,
there is an orthonormal basis (e1, . . . , en) of eigenvec-
tors of f such that the matrix of f w.r.t. this basis is
a diagonal matrix





λ1 . . .
λ2 . . .

... ... . . . ...
. . . λn





where λj ∈ C.

Remark : There is a converse to Theorem 9.10, namely, if
there is an orthonormal basis (e1, . . . , en) of eigenvectors
of f , then f is normal.
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9.2 Self-Adjoint, Skew-Self-Adjoint, and Orthogonal Lin-
ear Maps

Theorem 9.11.Given a Euclidean space E of dimen-
sion n, for every self-adjoint linear map
f : E → E, there is an orthonormal basis (e1, . . . , en)
of eigenvectors of f such that the matrix of f w.r.t.
this basis is a diagonal matrix





λ1 . . .
λ2 . . .

... ... . . . ...
. . . λn





where λi ∈ R.

Theorem 9.11 implies that if λ1, . . . ,λp are the distinct
real eigenvalues of f and Ei is the eigenspace associated
with λi, then

E = E1 ⊕ · · ·⊕ Ep,

where Ei and Ej are othogonal for all i �= j.
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Theorem 9.12.Given a Euclidean space E of dimen-
sion n, for every skew-self-adjoint linear map
f : E → E, there is an orthonormal basis (e1, . . . , en)
such that the matrix of f w.r.t. this basis is a block
diagonal matrix of the form





A1 . . .
A2 . . .

... ... . . . ...
. . . Ap





such that each block Aj is either 0 or a two-dimensional
matrix of the form

Aj =

�
0 −µj

µj 0

�

where µj ∈ R, with µj > 0. In particular, the eigen-
values of fC are pure imaginary of the form ±iµj, or
0.
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Theorem 9.13.Given a Euclidean space E of dimen-
sion n, for every orthogonal linear map
f : E → E, there is an orthonormal basis (e1, . . . , en)
such that the matrix of f w.r.t. this basis is a block
diagonal matrix of the form





A1 . . .
A2 . . .

... ... . . . ...
. . . Ap





such that each block Aj is either 1, −1, or a two-
dimensional matrix of the form

Aj =

�
cos θj − sin θj
sin θj cos θj

�

where 0 < θj < π.

In particular, the eigenvalues of fC are of the form
cos θj ± i sin θj, or 1, or −1.
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It is obvious that we can reorder the orthonormal basis of
eigenvectors given by Theorem 9.13, so that the matrix of
f w.r.t. this basis is a block diagonal matrix of the form





A1 . . .
... . . . ... ...

. . . Ar

−Iq
. . . Ip





where each block Aj is a two-dimensional rotation matrix
Aj �= ±I2 of the form

Aj =

�
cos θj − sin θj
sin θj cos θj

�

with 0 < θj < π.

The linear map f has an eigenspaceE(1, f ) = Ker (f − id)
of dimension p for the eigenvalue 1, and an eigenspace
E(−1, f ) = Ker (f + id) of dimension q for the eigen-
value −1.
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If det(f ) = +1 (f is a rotation), the dimension q of
E(−1, f ) must be even, and the entries in −Iq can be
paired to form two-dimensional blocks, if we wish.

Remark : Theorem 9.13 can be used to prove a sharper
version of the Cartan-Dieudonné Theorem.

Theorem 9.14. Let E be a Euclidean space of di-
mension n ≥ 2. For every isometry f ∈ O(E), if
p = dim(E(1, f )) = dim(Ker (f − id)), then f is the
composition of n−p reflections and n−p is minimal.

The theorems of this section and of the previous section
can be immediately applied to matrices.
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9.3 Normal, Symmetric, Skew-Symmetric, Orthogonal,
Hermitian, Skew-Hermitian, and Unitary Matrices

First, we consider real matrices.

Definition 9.3.Given a realm×nmatrixA, the trans-
pose A� of A is the n × m matrix A� = (a�i j) defined
such that

a�i j = aj i

for all i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n. A real n × n matrix
A is

1. normal iff
AA� = A�A,

2. symmetric iff
A� = A,

3. skew-symmetric iff

A� = −A,

4. orthogonal iff

AA� = A�A = In.
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Theorem 9.15. For every normal matrix A, there is
an orthogonal matrix P and a block diagonal matrix
D such that A = PDP�, where D is of the form

D =





D1 . . .
D2 . . .

... ... . . . ...
. . . Dp





such that each block Dj is either a one-dimensional
matrix (i.e., a real scalar) or a two-dimensional ma-
trix of the form

Dj =

�
λj −µj

µj λj

�

where λj, µj ∈ R, with µj > 0.
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Theorem 9.16. For every symmetric matrix A, there
is an orthogonal matrix P and a diagonal matrix D
such that A = PDP�, where D is of the form

D =





λ1 . . .
λ2 . . .

... ... . . . ...
. . . λn





where λi ∈ R.
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Theorem 9.17. For every skew-symmetric matrix A,
there is an orthogonal matrix P and a block diagonal
matrix D such that A = PDP�, where D is of the
form

D =





D1 . . .
D2 . . .

... ... . . . ...
. . . Dp





such that each block Dj is either 0 or a two-dimensional
matrix of the form

Dj =

�
0 −µj

µj 0

�

where µj ∈ R, with µj > 0. In particular, the eigen-
values of A are pure imaginary of the form ±iµj, or
0.
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Theorem 9.18. For every orthogonal matrix A, there
is an orthogonal matrix P and a block diagonal matrix
D such that A = PDP�, where D is of the form

D =





D1 . . .
D2 . . .

... ... . . . ...
. . . Dp





such that each block Dj is either 1, −1, or a two-
dimensional matrix of the form

Dj =

�
cos θj − sin θj
sin θj cos θj

�

where 0 < θj < π.

In particular, the eigenvalues of A are of the form
cos θj ± i sin θj, or 1, or −1.

We now consider complex matrices.
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Definition 9.4. Given a complex m× n matrix A, the
transpose A� of A is the n × m matrix A� = (a�i j)
defined such that

a�i j = aj i

for all i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n. The conjugate A of
A is the m× n matrix A = (bi j) defined such that

bi j = ai j

for all i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n. Given an n × n
complex matrix A, the adjoint A∗ of A is the matrix
defined such that

A∗ = (A�) = (A)�.

A complex n× n matrix A is

1. normal iff
AA∗ = A∗A,

2. Hermitian iff
A∗ = A,

3. skew-Hermitian iff

A∗ = −A,

4. unitary iff
AA∗ = A∗A = In.
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Theorem 9.10 can be restated in terms of matrices as
follows. We can also say a little more about eigenvalues
(easy exercise left to the reader).

Theorem 9.19. For every complex normal matrix A,
there is a unitary matrix U and a diagonal matrix D
such that A = UDU∗. Furthermore, if A is Hermi-
tian, D is a real matrix, if A is skew-Hermitian, then
the entries in D are pure imaginary or null, and if A
is unitary, then the entries in D have absolute value
1.
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