
Fundamentals of Linear Algebra
and Optimization

CIS515, Some Slides

Jean Gallier
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104, USA
e-mail: jean@cis.upenn.edu

c� Jean Gallier

January 10, 2012



2



Contents

1 Basics of Linear Algebra 7
1.1 Motivations: Linear Combinations, Linear

Independence, Rank . . . . . . . . . . . . 7
1.2 Vector Spaces . . . . . . . . . . . . . . . 23
1.3 Linear Independence, Subspaces . . . . . . 33
1.4 Bases of a Vector Space . . . . . . . . . . 42
1.5 Linear Maps . . . . . . . . . . . . . . . . 51
1.6 Matrices . . . . . . . . . . . . . . . . . . 57
1.7 Direct Products, Sums, and Direct Sums . 88
1.8 The Dual Space E∗ and Linear Forms . . 101
1.9 Hyperplanes and Linear Forms . . . . . . 117
1.10 Transpose of a Linear Map and of a Matrix 118
1.11 The Four Fundamental Subspaces . . . . . 123

2 Determinants 131
2.1 Permutations, Signature of a Permutation 131
2.2 Alternating Multilinear Maps . . . . . . . 137
2.3 Definition of a Determinant . . . . . . . . 145

3



4 CONTENTS

2.4 Inverse Matrices and Determinants . . . . 156
2.5 Systems of Linear Equations and Determi-

nants . . . . . . . . . . . . . . . . . . . . 160
2.6 Determinant of a Linear Map . . . . . . . 161
2.7 The Cayley–Hamilton Theorem . . . . . . 163
2.8 Further Readings . . . . . . . . . . . . . . 170

3 Gaussian Elimination, LU and Cholesky
Factorization 171
3.1 Gaussian Elimination and LU -Factorization171
3.2 Gaussian Elimination of Tridiagonal Ma-

trices . . . . . . . . . . . . . . . . . . . . 196
3.3 SPD Matrices and the Cholesky Decompo-

sition . . . . . . . . . . . . . . . . . . . . 203

4 Vector Norms and Matrix Norms 207
4.1 Normed Vector Spaces . . . . . . . . . . . 207
4.2 Matrix Norms . . . . . . . . . . . . . . . 216
4.3 Condition Numbers of Matrices . . . . . . 235

5 Euclidean Spaces 249
5.1 Inner Products, Euclidean Spaces . . . . . 249
5.2 Orthogonality . . . . . . . . . . . . . . . 259
5.3 Linear Isometries (Orthogonal Transforma-

tions) . . . . . . . . . . . . . . . . . . . . 277



CONTENTS 5

5.4 The Orthogonal Group, Orthogonal Matrices282
5.5 QR-Decomposition for Invertible Matrices 287

6 QR-Decomposition for Arbitrary Matri-
ces 293
6.1 Orthogonal Reflections . . . . . . . . . . . 293
6.2 QR-Decomposition Using Householder Ma-

trices . . . . . . . . . . . . . . . . . . . . 301

7 Basics of Hermitian Geometry 307
7.1 Sesquilinear Forms, Hermitian Forms . . . 307
7.2 Orthogonality, Duality, Adjoint of A Lin-

ear Map . . . . . . . . . . . . . . . . . . 320
7.3 Linear Isometries (also called Unitary Trans-

formations) . . . . . . . . . . . . . . . . . 331
7.4 The Unitary Group, Unitary Matrices . . . 335

8 Eigenvectors and Eigenvalues 339
8.1 Eigenvectors and Eigenvalues of a Linear

Map . . . . . . . . . . . . . . . . . . . . 339
8.2 Reduction to Upper Triangular Form . . . 353
8.3 Location of Eigenvalues . . . . . . . . . . 357

9 Spectral Theorems 361
9.1 Normal Linear Maps . . . . . . . . . . . . 361



6 CONTENTS

9.2 Self-Adjoint and Other Special Linear Maps376
9.3 Normal and Other Special Matrices . . . . 381

10 Singular Value Decomposition and Polar
Form 389
10.1 Singular Value Decomposition for Square

Matrices . . . . . . . . . . . . . . . . . . 389
10.2 Singular Value Decomposition for Rectan-

gular Matrices . . . . . . . . . . . . . . . 404

11 Applications of SVD and Pseudo-inverses407
11.1 Least Squares Problems and the Pseudo-

inverse . . . . . . . . . . . . . . . . . . . 407
11.2 Data Compression and SVD . . . . . . . . 420
11.3 Principal Components Analysis (PCA) . . 423
11.4 Best Affine Approximation . . . . . . . . 436

12 Quadratic Optimization Problems 447
12.1 Quadratic Optimization: The Positive Def-

inite Case . . . . . . . . . . . . . . . . . . 447
12.2 Quadratic Optimization: The General Case 466
12.3 Maximizing a Quadratic Function on the

Unit Sphere . . . . . . . . . . . . . . . . 471

Bibliography 480



Chapter 1

Basics of Linear Algebra

1.1 Motivations: Linear Combinations, Linear Inde-
pendence and Rank

Consider the problem of solving the following system of
three linear equations in the three variables
x1, x2, x3 ∈ R:

x1 + 2x2 − x3 = 1

2x1 + x2 + x3 = 2

x1 − 2x2 − 2x3 = 3.

One way to approach this problem is introduce some
“column vectors.
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8 CHAPTER 1. BASICS OF LINEAR ALGEBRA

Let u, v, w, and b, be the vectors given by

u =




1
2
1



 v =




2
1
−2



 w =




−1
1
−2



 b =




1
2
3





and write our linear system as

x1u + x2v + x3w = b.

In the above equation, we used implicitly the fact that a
vector z can be multiplied by a scalar λ ∈ R, where

λz = λ




z1
z2
z3



 =




λz1
λz2
λz3



 ,

and two vectors y and and z can be added, where

y + z =




y1
y2
y3



 +




z1
z2
z3



 =




y1 + z1
y2 + z2
y3 + z3



 .
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The set of all vectors with three components is denoted
by R3×1.

The reason for using the notation R3×1 rather than the
more conventional notation R3 is that the elements of
R3×1 are column vectors ; they consist of three rows and
a single column, which explains the superscript 3× 1.

On the other hand, R3 = R×R×R consists of all triples
of the form (x1, x2, x3), with x1, x2, x3 ∈ R, and these
are row vectors .

For the sake of clarity, in this introduction, we will denote
the set of column vectors with n components by Rn×1.

An expression such as

x1u + x2v + x3w

where u, v, w are vectors and the xis are scalars (in R) is
called a linear combination .
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Using this notion, the problem of solving our linear sys-
tem

x1u + x2v + x3w = b

is equivalent to

determining whether b can be expressed as a linear
combination of u, v, w.

Now, if the vectors u, v, w are linearly independent ,
which means that there is no triple (x1, x2, x2) �= (0, 0, 0)
such that

x1u + x2v + x3w = 0,

it can be shown that every vector in R3×1 can be written
as a linear combination of u, v, w.

In fact, every vector z ∈ R3×1 can be written in a unique
way as a linear combination

z = x1u + x2v + x3w.
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But, then, our equation

x1u + x2v + x3w = b

has a unique solution , and indeed, we can check that

x1 = 1.4

x2 = −0.4

x3 = −0.4

is the solution.

But then, how do we determine that some vectors are
linearly independent?

One answer is to compute the determinant det(u, v, w),
and to check that it is nonzero. In our case,

det(u, v, w) =

������

1 2 −1
2 1 1
1 −2 −2

������
= 15,

which confirms that u, v, w are linearly independent.
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Other methods consist of computing an LU-decomposition
or a QR-decomposition, or an SVD of the matrix con-
sisting of the three columns u, v, w,

A =
�
u v w

�
=




1 2 −1
2 1 1
1 −2 −2



 .

If we form the vector of unknowns

x =




x1
x2
x3



 ,

then our linear combination x1u + x2v + x3w can be
written in matrix form as

x1u + x2v + x3w =




1 2 −1
2 1 1
1 −2 −2








x1
x2
x3



 .
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So, our linear system is expressed by



1 2 −1
2 1 1
1 −2 −2








x1
x2
x3



 =




1
2
3



 ,

or more concisely as

Ax = b.

Now, what if the vectors u, v, w are
linearly dependent?

For example, if we consider the vectors

u =




1
2
1



 v =




2
1
−1



 w =




−1
1
2



 ,

we see that
u− v = w,

a nontrivial linear dependence .
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It can be verified that u and v are still linearly indepen-
dent.

Now, for our problem

x1u + x2v + x3w = b

to have a solution, it must be the case that b can be
expressed as linear combination of u and v.

However, it turns out that u, v, b are linearly independent
(because det(u, v, b) = −6), so b cannot be expressed as
a linear combination of u and v and thus, our system has
no solution.
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If we change the vector b to

b =




3
3
0



 ,

then
b = u + v,

and so the system

x1u + x2v + x3w = b

has the solution

x1 = 1, x2 = 1, x3 = 0.

Actually, since w = u−v, the above system is equivalent
to

(x1 + x3)u + (x2 − x3)v = b,

and because u and v are linearly independent, the unique
solution in x1 + x3 and x2 − x3 is

x1 + x3 = 1

x2 − x3 = 1,

which yields an infinite number of solutions parameter-
ized by x3, namely

x1 = 1− x3
x2 = 1 + x3.
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In summary, a 3 × 3 linear system may have a unique
solution, no solution, or an infinite number of solutions,
depending on the linear independence (and dependence)
or the vectors u, v, w, b.

This situation can be generalized to any n×n system, and
even to any n×m system (n equations in m variables),
as we will see later.

The point of view where our linear system is expressed
in matrix form as Ax = b stresses the fact that the map
x �→ Ax is a linear transformation .

This means that

A(λx) = λ(Ax)

for all x ∈ R3×1 and all λ ∈ R, and that

A(u + v) = Au + Av,

for all u, v ∈ R3×1.
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We can view the matrix A as a way of expressing a linear
map from R3×1 to R3×1 and solving the system Ax = b
amounts to determining whether b belongs to the image
(or range) of this linear map.

Yet another fruitful way of interpreting the resolution of
the system Ax = b is to view this problem as an
intersection problem .

Indeed, each of the equations

x1 + 2x2 − x3 = 1

2x1 + x2 + x3 = 2

x1 − 2x2 − 2x3 = 3

defines a subset of R3 which is actually a plane .
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The first equation

x1 + 2x2 − x3 = 1

defines the plane H1 passing through the three points
(1, 0, 0), (0, 1/2, 0), (0, 0,−1), on the coordinate axes, the
second equation

2x1 + x2 + x3 = 2

defines the plane H2 passing through the three points
(1, 0, 0), (0, 2, 0), (0, 0, 2), on the coordinate axes, and the
third equation

x1 − 2x2 − 2x3 = 3

defines the plane H3 passing through the three points
(3, 0, 0), (0,−3/2, 0), (0, 0,−3/2), on the coordinate axes.

The intersection Hi ∩ Hj of any two distinct planes Hi

and Hj is a line, and the intersection H1∩H2∩H3 of the
three planes consists of the single point (1.4,−0.4,−0.4).
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Under this interpretation, observe that we are focusing
on the rows of the matrix A, rather than on its columns ,
as in the previous interpretations.

Another great example of a real-world problem where lin-
ear algebra proves to be very effective is the problem of
data compression, that is, of representing a very large
data set using a much smaller amount of storage.

Typically the data set is represented as an m× n matrix
A where each row corresponds to an n-dimensional data
point and typically, m ≥ n.

In most applications, the data are not independent so
the rank of A is a lot smaller than min{m,n}, and the
the goal of low-rank decomposition is to factor A as the
product of two matrices B and C, where B is a m × k
matrix and C is a k × n matrix, with k � min{m,n}
(here, � means “much smaller than”):



20 CHAPTER 1. BASICS OF LINEAR ALGEBRA





A
m× n





=





B
m× k







 C
k × n





Now, it is generally too costly to find an exact factoriza-
tion as above, so we look for a low-rank matrix A� which
is a “good” approximation of A.

In order to make this statement precise, we need to define
a mechanism to determine how close two matrices are.
This can be done usingmatrix norms , a notion discussed
in Chapter 4.

The norm of a matrix A is a nonnegative real number
�A� which behaves a lot like the absolute value |x| of a
real number x.
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Then, our goal is to find some low-rank matrix A� that
minimizes the norm

�A− A��2 ,

over all matrices A� of rank at most k, for some given
k � min{m,n}.

Some advantages of a low-rank approximation are:

1. Fewer elements are required to represent A; namely,
k(m+ n) instead of mn. Thus less storage and fewer
operations are needed to reconstruct A.

2. Often, the decomposition exposes the underlying struc-
ture of the data. Thus, it may turn out that “most”
of the significant data are concentrated along some
directions called principal directions .
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Low-rank decompositions of a set of data have a multi-
tude of applications in engineering, including computer
science (especially computer vision), statistics, and ma-
chine learning.

As we will see later in Chapter 11, the singular value de-
composition (SVD) provides a very satisfactory solution
to the low-rank approximation problem.

Still, in many cases, the data sets are so large that another
ingredient is needed: randomization . However, as a first
step, linear algebra often yields a good initial solution.

We will now be more precise as to what kinds of opera-
tions are allowed on vectors.

In the early 1900, the notion of a vector space emerged
as a convenient and unifying framework for working with
“linear” objects.
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1.2 Vector Spaces

A (real) vector space is a set E together with two opera-
tions, +: E × E → E and · : R× E → E, called addi-
tion and scalar mutiplication, that satisfy some simple
properties.

First of all, E under addition has to be a commutative
(or abelian) group, a notion that we review next.

However, keep in mind that vector spaces are not just
algebraic objects; they are also geometric objects.
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Definition 1.1. A group is a set G equipped with an
operation · : G×G → G having the following properties:
· is associative , has an identity element e ∈ G, and
every element in G is invertible (w.r.t. ·). More explic-
itly, this means that the following equations hold for all
a, b, c ∈ G:

(G1) a · (b · c) = (a · b) · c. (associativity);

(G2) a · e = e · a = a. (identity);

(G3) For every a ∈ G, there is some a−1 ∈ G such that
a · a−1 = a−1 · a = e (inverse).

A group G is abelian (or commutative) if

a · b = b · a

for all a, b ∈ G.

A setM together with an operation · : M×M → M and
an element e satisfying only conditions (G1) and (G2) is
called a monoid .
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For example, the set N = {0, 1, . . . , n . . .} of natural
numbers is a (commutative) monoid. However, it is not
a group.

Example 1.1.

1. The set Z = {. . . ,−n, . . . ,−1, 0, 1, . . . , n . . .} of
integers is a group under addition, with identity ele-
ment 0. However, Z∗ = Z−{0} is not a group under
multiplication.

2. The set Q of rational numbers is a group under addi-
tion, with identity element 0. The set Q∗ = Q− {0}
is also a group under multiplication, with identity el-
ement 1.

3. Similarly, the sets R of real numbers and C of com-
plex numbers are groups under addition (with iden-
tity element 0), and R∗ = R−{0} and C∗ = C−{0}
are groups under multiplication (with identity element
1).
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4. The sets Rn and Cn of n-tuples of real or complex
numbers are groups under componentwise addition:

(x1, . . . , xn) + (y1, · · · , yn) = (x1 + yn, . . . , xn + yn),

with identity element (0, . . . , 0). All these groups are
abelian.

5. Given any nonempty set S, the set of bijections
f : S → S, also called permutations of S, is a group
under function composition (i.e., the multiplication
of f and g is the composition g ◦ f ), with identity
element the identity function idS. This group is not
abelian as soon as S has more than two elements.

6. The set of n× n matrices with real (or complex) co-
efficients is a group under addition of matrices, with
identity element the null matrix. It is denoted by
Mn(R) (or Mn(C)).

7. The set R[X ] of all polynomials in one variable with
real coefficients is a group under addition of polyno-
mials.
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8. The set of n × n invertible matrices with real (or
complex) coefficients is a group under matrix mul-
tiplication, with identity element the identity matrix
In. This group is called the general linear group and
is usually denoted by GL(n,R) (or GL(n,C)).

9. The set of n×n invertible matrices with real (or com-
plex) coefficients and determinant +1 is a group un-
der matrix multiplication, with identity element the
identity matrix In. This group is called the special
linear group and is usually denoted by SL(n,R) (or
SL(n,C)).

10. The set of n × n invertible matrices with real coef-
ficients such that RR� = In and of determinant +1
is a group called the orthogonal group and is usually
denoted by SO(n) (where R� is the transpose of the
matrix R, i.e., the rows of R� are the columns of R).
It corresponds to the rotations in Rn.
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11. Given an open interval ]a, b[, the set C(]a, b[) of con-
tinuous functions f : ]a, b[→ R is a group under the
operation f + g defined such that

(f + g)(x) = f (x) + g(x)

for all x ∈]a, b[.

It is customary to denote the operation of an abelian
groupG by +, in which case the inverse a−1 of an element
a ∈ G is denoted by −a.

Vector spaces are defined as follows.
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Definition 1.2. A real vector space is a set E (of vec-
tors) together with two operations +: E×E → E (called
vector addition)1 and · : R × E → E (called scalar
multiplication) satisfying the following conditions for all
α, β ∈ R and all u, v ∈ E;

(V0) E is an abelian group w.r.t. +, with identity element
0;

(V1) α · (u + v) = (α · u) + (α · v);
(V2) (α + β) · u = (α · u) + (β · u);
(V3) (α ∗ β) · u = α · (β · u);
(V4) 1 · u = u.

Given α ∈ R and v ∈ E, the element α ·v is also denoted
by αv. The field R is often called the field of scalars.

1The symbol + is overloaded, since it denotes both addition in the field R and addition of vectors in E.
It is usually clear from the context which + is intended.
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In definition 1.2, the field R may be replaced by the field
of complex numbers C, in which case we have a complex
vector space.

It is even possible to replace R by the field of rational
numbers Q or by any other field K (for example Z/pZ,
where p is a prime number), in which case we have a
K-vector space .

In most cases, the field K will be the field R of reals.

From (V0), a vector space always contains the null vector
0, and thus is nonempty.

From (V1), we get α · 0 = 0, and α · (−v) = −(α · v).

From (V2), we get 0 · v = 0, and (−α) · v = −(α · v).

The field R itself can be viewed as a vector space over
itself, addition of vectors being addition in the field, and
multiplication by a scalar being multiplication in the field.
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Example 1.2.

1. The fields R and C are vector spaces over R.
2. The groups Rn and Cn are vector spaces over R, and
Cn is a vector space over C.

3. The ring R[X ]n of polynomials of degree at most n
with real coefficients is a vector space over R, and the
ring C[X ]n of polynomials of degree at most n with
complex coefficients is a vector space over C.

4. The ring R[X ] of all polynomials with real coefficients
is a vector space over R, and the ring C[X ] of all
polynomials with complex coefficients is a vector space
over C.

5. The ring of n × n matrices Mn(R) is a vector space
over R.

6. The ring of m×n matrices Mm,n(R) is a vector space
over R.

7. The ring C(]a, b[) of continuous functions f : ]a, b[→
R is a vector space over R.
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Let E be a vector space. We would like to define the
important notions of linear combination and linear inde-
pendence.

These notions can be defined for sets of vectors in E, but
it will turn out to be more convenient to define them for
families (vi)i∈I , where I is any arbitrary index set.
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1.3 Linear Independence, Subspaces

One of the most useful properties of vector spaces is that
there possess bases.

What this means is that in every vector space, E, there is
some set of vectors, {e1, . . . , en}, such that every vector
v ∈ E can be written as a linear combination,

v = λ1e1 + · · · + λnen,

of the ei, for some scalars, λ1, . . . , λn ∈ R.

Furthermore, the n-tuple, (λ1, . . . , λn), as above is unique .

This description is fine when E has a finite basis,
{e1, . . . , en}, but this is not always the case!

For example, the vector space of real polynomials, R[X ],
does not have a finite basis but instead it has an infinite
basis, namely

1, X, X2, . . . , Xn, . . .
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For simplicity, in this chapter, we will restrict our atten-
tion to vector spaces that have a finite basis (we say that
they are finite-dimensional).

Given a set A, a family (ai)i∈I of elements of A is simply
a function a : I → A.

Remark: When considering a family (ai)i∈I , there is no
reason to assume that I is ordered.

The crucial point is that every element of the family is
uniquely indexed by an element of I .

Thus, unless specified otherwise, we do not assume that
the elements of an index set are ordered.

We agree that when I = ∅, (ai)i∈I = ∅. A family (ai)i∈I
is finite if I is finite.
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Given a family (ui)i∈I and any element v, we denote by

(ui)i∈I ∪k (v)

the family (wi)i∈I∪{k} defined such that, wi = ui if i ∈ I ,
and wk = v, where k is any index such that k /∈ I .

Given a family (ui)i∈I , a subfamily of (ui)i∈I is a family
(uj)j∈J where J is any subset of I .

In this chapter, unless specified otherwise, it is assumed
that all families of scalars are finite (i.e., their index set
is finite).
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Definition 1.3. Let E be a vector space. A vector
v ∈ E is a linear combination of a family (ui)i∈I of
elements of E iff there is a family (λi)i∈I of scalars in R
such that

v =
�

i∈I
λiui.

When I = ∅, we stipulate that v = 0.

We say that a family (ui)i∈I is linearly independent iff
for every family (λi)i∈I of scalars in R,

�

i∈I
λiui = 0 implies that λi = 0 for all i ∈ I.

Equivalently, a family (ui)i∈I is linearly dependent iff
there is some family (λi)i∈I of scalars in R such that

�

i∈I
λiui = 0 and λj �= 0 for some j ∈ I.

We agree that when I = ∅, the family ∅ is linearly inde-
pendent.
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A family (ui)i∈I is linearly dependent iff either I consists
of a single element, say i, and ui = 0, or |I| ≥ 2 and some
uj in the family can be expressed as a linear combination
of the other vectors in the family.

When I is nonempty, if the family (ui)i∈I is linearly in-
dependent, note that ui �= 0 for all i ∈ I , since otherwise
we would have

�
i∈I λiui = 0 with some λi �= 0, since

λi0 = 0.

Example 1.3.

1. Any two distinct scalars λ, µ �= 0 in R are linearly
dependent.

2. In R3, the vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1) are
linearly independent.

3. In R4, the vectors (1, 1, 1, 1), (0, 1, 1, 1), (0, 0, 1, 1),
and (0, 0, 0, 1) are linearly independent.

4. InR2, the vectors u = (1, 1), v = (0, 1) andw = (2, 3)
are linearly dependent, since

w = 2u + v.
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When I is finite, we often assume that it is the set I =
{1, 2, . . . , n}. In this case, we denote the family (ui)i∈I
as (u1, . . . , un).

The notion of a subspace of a vector space is defined as
follows.

Definition 1.4.Given a vector spaceE, a subset F ofE
is a linear subspace (or subspace) of E iff F is nonempty
and λu + µv ∈ F for all u, v ∈ F , and all λ, µ ∈ R.

It is easy to see that a subspace F of E is indeed a vector
space.

It is also easy to see that any intersection of subspaces
is a subspace.

Letting λ = µ = 0, we see that every subspace contains
the vector 0.

The subspace {0} will be denoted by (0), or even 0 (with
a mild abuse of notation).
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Example 1.4.

1. In R2, the set of vectors u = (x, y) such that

x + y = 0

is a subspace.

2. In R3, the set of vectors u = (x, y, z) such that

x + y + z = 0

is a subspace.

3. For any n ≥ 0, the set of polynomials f (X) ∈ R[X ]
of degree at most n is a subspace of R[X ].

4. The set of upper triangular n × n matrices is a sub-
space of the space of n× n matrices.

Proposition 1.1. Given any vector space E, if S is
any nonempty subset of E, then the smallest subspace
�S� (or Span(S)) of E containing S is the set of all
(finite) linear combinations of elements from S.
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One might wonder what happens if we add extra condi-
tions to the coefficients involved in forming linear combi-
nations.

Here are three natural restrictions which turn out to be
important (as usual, we assume that our index sets are
finite):

(1) Consider combinations
�

i∈I λiui for which
�

i∈I
λi = 1.

These are called affine combinations .

One should realize that every linear combination�
i∈I λiui can be viewed as an affine combination.

However, we get new spaces. For example, in R3,
the set of all affine combinations of the three vectors
e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1), is the
plane passing through these three points.

Since it does not contain 0 = (0, 0, 0), it is not a linear
subspace.
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(2) Consider combinations
�

i∈I λiui for which

λi ≥ 0, for all i ∈ I.

These are called positive (or conic) combinations

It turns out that positive combinations of families of
vectors are cones . They show up naturally in convex
optimization.

(3) Consider combinations
�

i∈I λiui for which we require
(1) and (2), that is

�

i∈I
λi = 1, and λi ≥ 0 for all i ∈ I.

These are called convex combinations .

Given any finite family of vectors, the set of all convex
combinations of these vectors is a convex polyhedron .

Convex polyhedra play a very important role in
convex optimization .
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1.4 Bases of a Vector Space

Definition 1.5. Given a vector space E and a subspace
V of E, a family (vi)i∈I of vectors vi ∈ V spans V or
generates V iff for every v ∈ V , there is some family
(λi)i∈I of scalars in R such that

v =
�

i∈I
λivi.

We also say that the elements of (vi)i∈I are generators
of V and that V is spanned by (vi)i∈I , or generated by
(vi)i∈I .

If a subspace V ofE is generated by a finite family (vi)i∈I ,
we say that V is finitely generated .

A family (ui)i∈I that spans V and is linearly independent
is called a basis of V .
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Example 1.5.

1. In R3, the vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1) form
a basis.

2. In the subspace of polynomials in R[X ] of degree at
most n, the polynomials 1, X,X2, . . . , Xn form a ba-
sis.

3. The polynomials

�
n
k

�
(1−X)kXn−k for k = 0, . . . , n,

also form a basis of that space.

It is a standard result of linear algebra that every vector
space E has a basis, and that for any two bases (ui)i∈I
and (vj)j∈J , I and J have the same cardinality.

In particular, if E has a finite basis of n elements, every
basis of E has n elements, and the integer n is called the
dimension of the vector space E.
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We begin with a crucial lemma.

Lemma 1.2.Given a linearly independent family (ui)i∈I
of elements of a vector space E, if v ∈ E is not a lin-
ear combination of (ui)i∈I, then the family (ui)i∈I∪k(v)
obtained by adding v to the family (ui)i∈I is linearly
independent (where k /∈ I).

The next theorem holds in general, but the proof is more
sophisticated for vector spaces that do not have a finite
set of generators.

Theorem 1.3. Given any finite family S = (ui)i∈I
generating a vector space E and any linearly indepen-
dent subfamily L = (uj)j∈J of S (where J ⊆ I), there
is a basis B of E such that L ⊆ B ⊆ S.
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The following proposition giving useful properties charac-
terizing a basis is an immediate consequence of Theorem
1.3.

Proposition 1.4. Given a vector space E, for any
family B = (vi)i∈I of vectors of E, the following prop-
erties are equivalent:

(1) B is a basis of E.

(2) B is a maximal linearly independent family of E.

(3) B is a minimal generating family of E.

The following replacement lemma due to Steinitz shows
the relationship between finite linearly independent fam-
ilies and finite families of generators of a vector space.
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Proposition 1.5. (Replacement lemma) Given a vec-
tor space E, let (ui)i∈I be any finite linearly indepen-
dent family in E, where |I| = m, and let (vj)j∈J be
any finite family such that every ui is a linear combi-
nation of (vj)j∈J, where |J | = n. Then, there exists a
set L and an injection ρ : L → J (a relabeling func-
tion) such that L ∩ I = ∅, |L| = n−m, and the fam-
ilies (ui)i∈I ∪ (vρ(l))l∈L and (vj)j∈J generate the same
subspace of E. In particular, m ≤ n.

The idea is that m of the vectors vj can be replaced by
the linearly independent ui’s in such a way that the same
subspace is still generated.

The purpose of the function ρ : L → J is to pick n−m el-
ements j1, . . . , jn−m of J and to relabel them l1, . . . , ln−m

in such a way that these new indices do not clash with the
indices in I ; this way, the vectors vj1, . . . , vjn−m who “sur-
vive” (i.e. are not replaced) are relabeled vl1, . . . , vln−m,
and the other m vectors vj with j ∈ J − {j1, . . . , jn−m}
are replaced by the ui. The index set of this new family
is I ∪ L.



1.4. BASES OF A VECTOR SPACE 47

Actually, one can prove that Proposition 1.5 implies The-
orem 1.3 when the vector space is finitely generated.

Putting Theorem 1.3 and Proposition 1.5 together, we
obtain the following fundamental theorem.

Theorem 1.6. Let E be a finitely generated vector
space. Any family (ui)i∈I generating E contains a
subfamily (uj)j∈J which is a basis of E. Furthermore,
for every two bases (ui)i∈I and (vj)j∈J of E, we have
|I| = |J | = n for some fixed integer n ≥ 0.

Remark: Theorem 1.6 also holds for vector spaces that
are not finitely generated.

When E is not finitely generated, we say that E is of
infinite dimension .

The dimension of a finitely generated vector space E is
the common dimension n of all of its bases and is denoted
by dim(E).
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Clearly, if the field R itself is viewed as a vector space,
then every family (a) where a ∈ R and a �= 0 is a basis.
Thus dim(R) = 1.

Note that dim({0}) = 0.

If E is a vector space of dimension n ≥ 1, for any sub-
space U of E,

if dim(U) = 1, then U is called a line ;

if dim(U) = 2, then U is called a plane ;

if dim(U) = n− 1, then U is called a hyperplane .

If dim(U) = k, then U is sometimes called a k-plane .

Let (ui)i∈I be a basis of a vector space E.

For any vector v ∈ E, since the family (ui)i∈I generates
E, there is a family (λi)i∈I of scalars in R, such that

v =
�

i∈I
λiui.
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A very important fact is that the family (λi)i∈I is unique.

Proposition 1.7. Given a vector space E, let (ui)i∈I
be a family of vectors in E. Let v ∈ E, and assume
that v =

�
i∈I λiui. Then, the family (λi)i∈I of scalars

such that v =
�

i∈I λiui is unique iff (ui)i∈I is linearly
independent.

If (ui)i∈I is a basis of a vector space E, for any vector
v ∈ E, if (xi)i∈I is the unique family of scalars in R such
that

v =
�

i∈I
xiui,

each xi is called the component (or coordinate) of index
i of v with respect to the basis (ui)i∈I .

Many interesting mathematical structures are vector spaces.

A very important example is the set of linear maps be-
tween two vector spaces to be defined in the next section.
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Here is an example that will prepare us for the vector
space of linear maps.

Example 1.6. Let X be any nonempty set and let E
be a vector space. The set of all functions f : X → E
can be made into a vector space as follows: Given any
two functions f : X → E and g : X → E, let
(f + g) : X → E be defined such that

(f + g)(x) = f (x) + g(x)

for all x ∈ X , and for every λ ∈ R, let λf : X → E be
defined such that

(λf )(x) = λf (x)

for all x ∈ X .

The axioms of a vector space are easily verified.
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1.5 Linear Maps

A function between two vector spaces that preserves the
vector space structure is called a homomorphism of vector
spaces, or linear map.

Linear maps formalize the concept of linearity of a func-
tion.

Keep in mind that linear maps, which are
transformations of space, are usually far more

important than the spaces themselves.

In the rest of this section, we assume that all vector spaces
are real vector spaces.
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Definition 1.6. Given two vector spaces E and F , a
linear map between E and F is a function f : E → F
satisfying the following two conditions:

f (x + y) = f (x) + f (y) for all x, y ∈ E;

f (λx) = λf (x) for all λ ∈ R, x ∈ E.

Setting x = y = 0 in the first identity, we get f (0) = 0.

The basic property of linear maps is that they transform
linear combinations into linear combinations.

Given any finite family (ui)i∈I of vectors in E, given any
family (λi)i∈I of scalars in R, we have

f (
�

i∈I
λiui) =

�

i∈I
λif (ui).

The above identity is shown by induction on |I| using the
properties of Definition 1.6.
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Example 1.7.

1. The map f : R2 → R2 defined such that

x� = x− y

y� = x + y

is a linear map.

2. For any vector space E, the identity map id : E → E
given by

id(u) = u for all u ∈ E

is a linear map. When we want to be more precise,
we write idE instead of id.

3. The map D : R[X ] → R[X ] defined such that

D(f (X)) = f �(X),

where f �(X) is the derivative of the polynomial f (X),
is a linear map
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Definition 1.7. Given a linear map f : E → F , we
define its image (or range) Im f = f (E), as the set

Im f = {y ∈ F | (∃x ∈ E)(y = f (x))},

and its Kernel (or nullspace) Ker f = f−1(0), as the set

Ker f = {x ∈ E | f (x) = 0}.

The rank rk(f ) of the linear map f is the dimension
dim(Im f ), of the image of f .

Proposition 1.8. Given a linear map f : E → F ,
the set Im f is a subspace of F and the set Ker f is a
subspace of E. The linear map f : E → F is injective
iff Ker f = 0 (where 0 is the trivial subspace {0}).
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A fundamental property of bases in a vector space is that
they allow the definition of linear maps as unique homo-
morphic extensions, as shown in the following proposi-
tion.

Proposition 1.9.Given any two vector spaces E and
F , given any basis (ui)i∈I of E, given any other family
of vectors (vi)i∈I in F , there is a unique linear map
f : E → F such that f (ui) = vi for all i ∈ I.

Furthermore, f is injective iff (vi)i∈I is linearly inde-
pendent, and f is surjective iff (vi)i∈I generates F .

By the second part of Proposition 1.9, an injective linear
map f : E → F sends a basis (ui)i∈I to a linearly inde-
pendent family (f (ui))i∈I of F , which is also a basis when
f is bijective.

Also, when E and F have the same finite dimension n,
(ui)i∈I is a basis of E, and f : E → F is injective, then
(f (ui))i∈I is a basis of F (by Proposition 1.4).
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The following simple proposition is also useful.

Proposition 1.10. Given any two vector spaces E
and F , with F nontrivial, given any family (ui)i∈I of
vectors in E, the following properties hold:

(1) The family (ui)i∈I generates E iff for every family
of vectors (vi)i∈I in F , there is at most one linear
map f : E → F such that f (ui) = vi for all i ∈ I.

(2) The family (ui)i∈I is linearly independent iff for
every family of vectors (vi)i∈I in F , there is some
linear map f : E → F such that f (ui) = vi for all
i ∈ I.



1.6. MATRICES 57

1.6 Matrices

Proposition 1.9 shows that given two vector spaces E and
F and a basis (uj)j∈J of E, every linear map f : E → F
is uniquely determined by the family (f (uj))j∈J of the
images under f of the vectors in the basis (uj)j∈J .

Thus, in particular, taking F = Rn, we get an isomor-
phism between any vector space E of dimension |J | = n
and Rn.

If we also have a basis (vi)i∈I of F , then every vector
f (uj) can be written in a unique way as

f (uj) =
�

i∈I
ai jvi,

where j ∈ J , for a family of scalars (ai j)i∈I .

Thus, with respect to the two bases (uj)j∈J of E and
(vi)i∈I of F , the linear map f is completely determined
by a “I × J -matrix”

M(f ) = (ai j)i∈I, j∈J.
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Remark: Note that we intentionally assigned the index
set J to the basis (uj)j∈J of E, and the index I to the
basis (vi)i∈I of F , so that the rows of the matrix M(f )
associated with f : E → F are indexed by I , and the
columns of the matrix M(f ) are indexed by J .

Obviously, this causes a mildly unpleasant reversal. If we
had considered the bases (ui)i∈I of E and (vj)j∈J of F ,
we would obtain a J × I-matrix M(f ) = (aj i)j∈J, i∈I .

No matter what we do, there will be a reversal! We de-
cided to stick to the bases (uj)j∈J of E and (vi)i∈I of F ,
so that we get an I × J -matrix M(f ), knowing that we
may occasionally suffer from this decision!
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When I and J are finite, and say, when |I| = m and |J | =
n, the linear map f is determined by the matrix M(f )
whose entries in the j-th column are the components of
the vector f (uj) over the basis (v1, . . . , vm), that is, the
matrix

M(f ) =





a1 1 a1 2 . . . a1n
a2 1 a2 2 . . . a2n
... ... . . . ...

am 1 am 2 . . . amn





whose entry on row i and column j is ai j (1 ≤ i ≤ m,
1 ≤ j ≤ n).

Given vector spaces E, F , and G, and linear maps
f : E → F and g : F → G, it is easily verified that the
composition g ◦ f : E → G of f and g is a linear map.
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A linear map f : E → F is an isomorphism iff there is
a linear map g : F → E, such that g ◦ f = idE, and
f ◦ g = idF .

It is immediately verified that such a map g is unique.

The map g is called the inverse of f and it is also denoted
by f−1.

One can verify that if f : E → F is a bijective linear
map, then its inverse f−1 : F → E is also a linear map,
and thus f is an isomorphism.

The set of all linear maps between two vector spaces
E and F is denoted by Hom(E,F ).

When we wish to be more precise and specify the field
K over which the vector spaces E and F are defined we
write HomK(E,F ).
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The set Hom(E,F ) is a vector space under the operations
defined at the end of Section 1.1, namely

(f + g)(x) = f (x) + g(x)

for all x ∈ E, and

(λf )(x) = λf (x)

for all x ∈ E.

When E and F have finite dimensions, the vector space
Hom(E,F ) also has finite dimension, as we shall see
shortly.

When E = F , a linear map f : E → E is also called an
endomorphism . The space Hom(E,E) is also denoted
by End(E).
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It is also important to note that composition confers to
Hom(E,E) a ring structure.

Indeed, composition is an operation
◦ : Hom(E,E) × Hom(E,E) → Hom(E,E), which is
associative and has an identity idE, and the distributivity
properties hold:

(g1 + g2) ◦ f = g1 ◦ f + g2 ◦ f ;
g ◦ (f1 + f2) = g ◦ f1 + g ◦ f2.

The ring Hom(E,E) is an example of a noncommutative
ring.

It is easily seen that the set of bijective linear maps
f : E → E is a group under composition. Bijective linear
maps are also called automorphisms .

The group of automorphisms of E is called the general
linear group (of E), and it is denoted by GL(E), or
by Aut(E), or when E = Rn, by GL(n,R), or even by
GL(n).
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We will now show that when E and F have finite dimen-
sion, linear maps can be very conveniently represented
by matrices, and that composition of linear maps corre-
sponds to matrix multiplication.

We will follow rather closely an elegant presentation method
due to Emil Artin.

Let E and F be two vector spaces, and assume that E
has a finite basis (u1, . . . , un) and that F has a finite
basis (v1, . . . , vm). Recall that we have shown that every
vector x ∈ E can be written in a unique way as

x = x1u1 + · · · + xnun,

and similarly every vector y ∈ F can be written in a
unique way as

y = y1v1 + · · · + ymvm.

Let f : E → F be a linear map between E and F .
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Then, for every x = x1u1+ · · ·+ xnun in E, by linearity,
we have

f (x) = x1f (u1) + · · · + xnf (un).

Let

f (uj) = a1 jv1 + · · · + amjvm,

or more concisely,

f (uj) =
m�

i=1

ai jvi,

for every j, 1 ≤ j ≤ n.

Then, substituting the right-hand side of each f (uj) into
the expression for f (x), we get

f (x) = x1(
m�

i=1

ai 1vi) + · · · + xn(
m�

i=1

ainvi),

which, by regrouping terms to obtain a linear combination
of the vi, yields

f (x) = (
n�

j=1

a1 jxj)v1 + · · · + (
n�

j=1

amjxj)vm.
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Thus, letting f (x) = y = y1v1 + · · · + ymvm, we have

yi =
n�

j=1

ai jxj (1)

for all i, 1 ≤ i ≤ m.

Let us now consider how the composition of linear maps
is expressed in terms of bases.

Let E, F , and G, be three vectors spaces with respec-
tive bases (u1, . . . , up) for E, (v1, . . . , vn) for F , and
(w1, . . . , wm) for G.

Let g : E → F and f : F → G be linear maps.

As explained earlier, g : E → F is determined by the im-
ages of the basis vectors uj, and f : F → G is determined
by the images of the basis vectors vk.

We would like to understand how f ◦ g : E → G is de-
termined by the images of the basis vectors uj.
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Remark: Note that we are considering linear maps
g : E → F and f : F → G, instead of f : E → F and
g : F → G, which yields the composition f ◦ g : E → G
instead of g ◦ f : E → G.

Our perhaps unusual choice is motivated by the fact that
if f is represented by a matrix M(f ) = (ai k) and g is
represented by a matrix M(g) = (bk j), then
f ◦ g : E → G is represented by the product AB of the
matrices A and B.

If we had adopted the other choice where f : E → F and
g : F → G, then g ◦ f : E → G would be represented by
the product BA.

Obviously, this is a matter of taste! We will have to live
with our perhaps unorthodox choice.
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Thus, let

f (vk) =
m�

i=1

ai kwi,

for every k, 1 ≤ k ≤ n, and let

g(uj) =
n�

k=1

bk jvk,

for every j, 1 ≤ j ≤ p.

Also if
x = x1u1 + · · · + xpup,

let
y = g(x)

and
z = f (y) = (f ◦ g)(x),

with
y = y1v1 + · · · + ynvn

and
z = z1w1 + · · · + zmwm.
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After some calculations, we get

zi =
p�

j=1

(
n�

k=1

ai kbk j)xj.

Thus, defining ci j such that

ci j =
n�

k=1

ai kbk j,

for 1 ≤ i ≤ m, and 1 ≤ j ≤ p, we have

zi =
p�

j=1

ci jxj (4)

Identity (4) suggests defining a multiplication operation
on matrices, and we proceed to do so.
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Definition 1.8. If K = R or K = C, An m × n-
matrix over K is a family (ai j)1≤i≤m, 1≤j≤n of scalars in
K, represented by an array





a1 1 a1 2 . . . a1n
a2 1 a2 2 . . . a2n
... ... . . . ...

am 1 am 2 . . . amn





In the special case where m = 1, we have a row vector ,
represented by

(a1 1 · · · a1n)

and in the special case where n = 1, we have a column
vector , represented by




a1 1
...

am 1





In these last two cases, we usually omit the constant index
1 (first index in case of a row, second index in case of a
column).
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The set of all m× n-matrices is denoted by Mm,n(K) or
Mm,n.

An n×n-matrix is called a square matrix of dimension
n.

The set of all square matrices of dimension n is denoted
by Mn(K), or Mn.

Remark: As defined, a matrix A = (ai j)1≤i≤m, 1≤j≤n

is a family , that is, a function from {1, 2, . . . ,m} ×
{1, 2, . . . , n} to K.

As such, there is no reason to assume an ordering on the
indices. Thus, the matrix A can be represented in many
different ways as an array, by adopting different orders
for the rows or the columns.

However, it is customary (and usually convenient) to as-
sume the natural ordering on the sets {1, 2, . . . ,m} and
{1, 2, . . . , n}, and to represent A as an array according
to this ordering of the rows and columns.
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We also define some operations on matrices as follows.

Definition 1.9. Given two m × n matrices A = (ai j)
and B = (bi j), we define their sum A+B as the matrix
C = (ci j) such that ci j = ai j + bi j; that is,





a1 1 a1 2 . . . a1n
a2 1 a2 2 . . . a2n
... ... . . . ...

am 1 am 2 . . . amn



 +





b1 1 b1 2 . . . b1n
b2 1 b2 2 . . . b2n
... ... . . . ...

bm 1 bm 2 . . . bmn





=





a1 1 + b1 1 a1 2 + b1 2 . . . a1n + b1n
a2 1 + b2 1 a2 2 + b2 2 . . . a2n + b2n

... ... . . . ...
am 1 + bm 1 am 2 + bm 2 . . . amn + bmn



 .

Given a scalar λ ∈ K, we define the matrix λA as the
matrix C = (ci j) such that ci j = λai j; that is

λ





a1 1 a1 2 . . . a1n
a2 1 a2 2 . . . a2n
... ... . . . ...

am 1 am 2 . . . amn



 =





λa1 1 λa1 2 . . . λa1n
λa2 1 λa2 2 . . . λa2n
... ... . . . ...

λam 1 λam 2 . . . λamn



 .
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Given anm×nmatrices A = (ai k) and an n×pmatrices
B = (bk j), we define their product AB as the m × p
matrix C = (ci j) such that

ci j =
n�

k=1

ai kbk j,

for 1 ≤ i ≤ m, and 1 ≤ j ≤ p. In the product AB = C
shown below





a1 1 a1 2 . . . a1n
a2 1 a2 2 . . . a2n
... ... . . . ...

am 1 am 2 . . . amn









b1 1 b1 2 . . . b1 p
b2 1 b2 2 . . . b2 p
... ... . . . ...

bn 1 bn 2 . . . bn p





=





c1 1 c1 2 . . . c1 p
c2 1 c2 2 . . . c2 p
... ... . . . ...

cm 1 cm 2 . . . cmp




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note that the entry of index i and j of the matrix AB ob-
tained by multiplying the matrices A and B can be iden-
tified with the product of the row matrix corresponding
to the i-th row of A with the column matrix corre-
sponding to the j-column of B:

(ai 1 · · · ain)




b1 j
...

bn j



 =
n�

k=1

ai kbk j.

Given an m × n matrix A = (ai j), its transpose A� =
(a�j i), is the n ×m-matrix such that a�j i = ai j, for all i,
1 ≤ i ≤ m, and all j, 1 ≤ j ≤ n.

The transpose of a matrix A is sometimes denoted by At,
or even by tA.

The square matrix In of dimension n containing 1 on
the diagonal and 0 everywhere else is called the identity
matrix . It is denoted by

In =





1 0 . . . 0
0 1 . . . 0
... ... . . . ...
0 0 . . . 1




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Note that the transpose A� of a matrix A has the prop-
erty that the j-th row of A� is the j-th column of A.

In other words, transposition exchanges the rows and the
columns of a matrix.

The following observation will be useful later on when we
discuss the SVD. Given anym×nmatrixA and any n×p
matrix B, if we denote the columns of A by A1, . . . , An

and the rows of B by B1, . . . , Bn, then we have

AB = A1B1 + · · · + AnBn.

For every square matrix A of dimension n, it is immedi-
ately verified that AIn = InA = A.

If a matrix B such that AB = BA = In exists, then it is
unique, and it is called the inverse of A. The matrix B
is also denoted by A−1.

An invertible matrix is also called a nonsingular matrix,
and a matrix that is not invertible is called a singular
matrix.
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We will see later that if a square matrix A has a left
inverse, that is a matrix B such that BA = I , or a right
inverse, that is a matrix C such that AC = I , then A is
actually invertible; so in fact B = A−1 and C = A−1; see
Proposition 1.22.

It is immediately verified that the set Mm,n(K) of m×n
matrices is a vector space under addition of matrices and
multiplication of a matrix by a scalar.

Consider the m × n-matrices Ei,j = (eh k), defined such
that ei j = 1, and eh k = 0, if h �= i or k �= j.

It is clear that every matrix A = (ai j) ∈ Mm,n(K) can
be written in a unique way as

A =
m�

i=1

n�

j=1

ai jEi,j.

Thus, the family (Ei,j)1≤i≤m,1≤j≤n is a basis of the vector
space Mm,n(K), which has dimension mn.
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Square matrices provide a natural example of a noncom-
mutative ring with zero divisors.

Example 1.8. For example, letting A,B be the 2 × 2-
matrices

A =

�
1 0
0 0

�
, B =

�
0 0
1 0

�
,

then

AB =

�
1 0
0 0

��
0 0
1 0

�
=

�
0 0
0 0

�
,

and

BA =

�
0 0
1 0

��
1 0
0 0

�
=

�
0 0
1 0

�
.

We now formalize the representation of linear maps by
matrices.
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Definition 1.10. Let E and F be two vector spaces,
and let (u1, . . . , un) be a basis for E, and (v1, . . . , vm) be
a basis for F . Each vector x ∈ E expressed in the basis
(u1, . . . , un) as x = x1u1 + · · · + xnun is represented by
the column matrix

M(x) =




x1
...
xn





and similarly for each vector y ∈ F expressed in the basis
(v1, . . . , vm).

Every linear map f : E → F is represented by the matrix
M(f ) = (ai j), where ai j is the i-th component of the
vector f (uj) over the basis (v1, . . . , vm), i.e., where

f (uj) =
m�

i=1

ai jvi,

for every j, 1 ≤ j ≤ n. Explicitly, we have

M(f ) =





a1 1 a1 2 . . . a1n
a2 1 a2 2 . . . a2n
... ... . . . ...

am 1 am 2 . . . amn




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The matrix M(f ) associated with the linear map
f : E → F is called the matrix of f with respect to the
bases (u1, . . . , un) and (v1, . . . , vm).

When E = F and the basis (v1, . . . , vm) is identical to
the basis (u1, . . . , un) of E, the matrix M(f ) associated
with f : E → E (as above) is called thematrix of f with
respect to the base (u1, . . . , un).

Remark: As in the remark after Definition 1.8, there
is no reason to assume that the vectors in the bases
(u1, . . . , un) and (v1, . . . , vm) are ordered in any particu-
lar way.

However, it is often convenient to assume the natural or-
dering. When this is so, authors sometimes refer to the
matrix M(f ) as the matrix of f with respect to the
ordered bases (u1, . . . , un) and (v1, . . . , vm).
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Then, given a linear map f : E → F represented by the
matrix M(f ) = (ai j) w.r.t. the bases (u1, . . . , un) and
(v1, . . . , vm), by equations (1) and the definition of matrix
multiplication, the equation y = f (x) correspond to the
matrix equation M(y) = M(f )M(x), that is,




y1
...
ym



 =




a1 1 . . . a1n
... . . . ...

am 1 . . . amn








x1
...
xn



 .

Recall that





a1 1 a1 2 . . . a1n
a2 1 a2 2 . . . a2n
... ... . . . ...

am 1 am 2 . . . amn









x1
x2
...
xn





= x1





a1 1
a2 1
...

am 1



 + x2





a1 2
a2 2
...

am 2



 + · · · + xn





a1n
a2n
...

amn



 .

The function that associates to a linear map f : E →
F the matrix M(f ) w.r.t. the bases (u1, . . . , un) and
(v1, . . . , vm) has the property that matrix multiplication
corresponds to composition of linear maps.
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This allows us to transfer properties of linear maps to
matrices.

Proposition 1.11. (1) Given any matrices
A ∈ Mm,n(K), B ∈ Mn,p(K), and C ∈ Mp,q(K), we
have

(AB)C = A(BC);

that is, matrix multiplication is associative.

(2) Given any matrices A,B ∈ Mm,n(K), and
C,D ∈ Mn,p(K), for all λ ∈ K, we have

(A + B)C = AC + BC

A(C +D) = AC + AD

(λA)C = λ(AC)

A(λC) = λ(AC),

so that matrix multiplication
· : Mm,n(K)×Mn,p(K) → Mm,p(K) is bilinear.

Note that Proposition 1.11 implies that the vector space
Mn(K) of square matrices is a (noncommutative) ring
with unit In.
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The following proposition states the main properties of
the mapping f �→ M(f ) between Hom(E,F ) and Mm,n.

In short, it is an isomorphism of vector spaces.

Proposition 1.12. Given three vector spaces E, F ,
G, with respective bases (u1, . . . , up), (v1, . . . , vn), and
(w1, . . . , wm), the mapping M : Hom(E,F ) → Mn,p that
associates the matrix M(g) to a linear map g : E → F
satisfies the following properties for all x ∈ E, all
g, h : E → F , and all f : F → G:

M(g(x)) = M(g)M(x)

M(g + h) = M(g) +M(h)

M(λg) = λM(g)

M(f ◦ g) = M(f )M(g).

Thus, M : Hom(E,F ) → Mn,p is an isomorphism of
vector spaces, and when p = n and the basis (v1, . . . , vn)
is identical to the basis (u1, . . . , up),
M : Hom(E,E) → Mn is an isomorphism of rings.
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In view of Proposition 1.12, it seems preferable to rep-
resent vectors from a vector space of finite dimension as
column vectors rather than row vectors.

Thus, from now on, we will denote vectors of Rn (or more
generally, of Kn) as columm vectors.

It is important to observe that the isomorphism
M : Hom(E,F ) → Mn,p given by Proposition 1.12 de-
pends on the choice of the bases (u1, . . . , up) and
(v1, . . . , vn), and similarly for the isomorphism
M : Hom(E,E) → Mn, which depends on the choice of
the basis (u1, . . . , un).

Thus, it would be useful to know how a change of basis
affects the representation of a linear map f : E → F as
a matrix.
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Proposition 1.13. Let E be a vector space, and let
(u1, . . . , un) be a basis of E. For every family (v1, . . . , vn),
let P = (ai j) be the matrix defined such that vj =�n

i=1 ai jui. The matrix P is invertible iff (v1, . . . , vn)
is a basis of E.

Proposition 1.13 suggests the following definition.

Definition 1.11. Given a vector space E of dimension
n, for any two bases (u1, . . . , un) and (v1, . . . , vn) of E,
let P = (ai j) be the invertible matrix defined such that

vj =
n�

i=1

ai jui,

which is also the matrix of the identity id : E → E with
respect to the bases (v1, . . . , vn) and (u1, . . . , un), in that
order (indeed, we express each id(vj) = vj over the basis
(u1, . . . , un)). The matrix P is called the change of basis
matrix from (u1, . . . , un) to (v1, . . . , vn).
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Clearly, the change of basis matrix from (v1, . . . , vn) to
(u1, . . . , un) is P−1.

Since P = (ai,j) is the matrix of the identity id : E → E
with respect to the bases (v1, . . . , vn) and (u1, . . . , un),
given any vector x ∈ E, if x = x1u1 + · · · + xnun over
the basis (u1, . . . , un) and x = x�1v1+ · · ·+x�nvn over the
basis (v1, . . . , vn), from Proposition 1.12, we have




x1
...
xn



 =




a1 1 . . . a1n
... . . . ...

an 1 . . . ann








x�1
...
x�n





showing that the old coordinates (xi) of x (over (u1, . . . , un))
are expressed in terms of the new coordinates (x�i) of x
(over (v1, . . . , vn)).

Since the matrix P expresses the new basis (v1, . . . , vn)
in terms of the old basis (u1, . . ., un), we observe that
the coordinates (xi) of a vector x vary in the opposite
direction of the change of basis.
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For this reason, vectors are sometimes said to be con-
travariant .

However, this expression does not make sense!

Indeed, a vector in an intrinsic quantity that does not
depend on a specific basis. What makes sense is that the
coordinates of a vector vary in a contravariant fashion.

The effect of a change of bases on the representation of a
linear map is described in the following proposition.

Proposition 1.14. Let E and F be vector spaces, let
(u1, . . . , un) and (u�1, . . . , u

�
n) be two bases of E, and

let (v1, . . . , vm) and (v�1, . . . , v
�
m) be two bases of F . Let

P be the change of basis matrix from (u1, . . . , un) to
(u�1, . . . , u

�
n), and let Q be the change of basis matrix

from (v1, . . . , vm) to (v�1, . . . , v
�
m). For any linear map

f : E → F , let M(f ) be the matrix associated to f
w.r.t. the bases (u1, . . . , un) and (v1, . . . , vm), and let
M �(f ) be the matrix associated to f w.r.t. the bases
(u�1, . . . , u

�
n) and (v�1, . . . , v

�
m). We have

M �(f ) = Q−1M(f )P.
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As a corollary, we get the following result.

Corollary 1.15. Let E be a vector space, and let
(u1, . . . , un) and (u�1, . . . , u

�
n) be two bases of E. Let

P be the change of basis matrix from (u1, . . . , un) to
(u�1, . . . , u

�
n). For any linear map f : E → E, let M(f )

be the matrix associated to f w.r.t. the basis (u1, . . . , un),
and let M �(f ) be the matrix associated to f w.r.t. the
basis (u�1, . . . , u

�
n). We have

M �(f ) = P−1M(f )P.

Even though matrices are indispensable since they are the
major tool in applications of linear algebra, one should
not lose track of the fact that

linear maps are more fundamental, because they are
intrinsic objects that do not depend on the choice of
bases. Consequently, we advise the reader to try to
think in terms of linear maps rather than reduce

everthing to matrices.
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In our experience, this is particularly effective when it
comes to proving results about linear maps and matri-
ces, where proofs involving linear maps are often more
“conceptual.”

Also, instead of thinking of a matrix decomposition, as a
purely algebraic operation, it is often illuminating to view
it as a geometric decomposition .

After all, a

a matrix is a representation of a linear map

and most decompositions of a matrix reflect the fact that
with a suitable choice of a basis (or bases), the linear
map is a represented by a matrix having a special shape.

The problem is then to find such bases.

Also, always try to keep in mind that

linear maps are geometric in nature; they act on
space.
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1.7 Direct Products, Sums, and Direct Sums

There are some useful ways of forming new vector spaces
from older ones.

Definition 1.12.Given p ≥ 2 vector spacesE1, . . . , Ep,
the product F = E1×· · ·×Ep can be made into a vector
space by defining addition and scalar multiplication as
follows:

(u1, . . . , up) + (v1, . . . , vp) = (u1 + v1, . . . , up + vp)

λ(u1, . . . , up) = (λu1, . . . , λup),

for all ui, vi ∈ Ei and all λ ∈ R.

With the above addition and multiplication, the vector
space F = E1 × · · · × Ep is called the direct product of
the vector spaces E1, . . . , Ep.
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The projection maps pri : E1× · · · ×Ep → Ei given by

pri(u1, . . . , up) = ui

are clearly linear.

Similarly, the maps ini : Ei → E1 × · · · × Ep given by

ini(ui) = (0, . . . , 0, ui, 0, . . . , 0)

are injective and linear.

It can be shown (using bases) that

dim(E1 × · · · × Ep) = dim(E1) + · · · + dim(Ep).

Let us now consider a vector space E and p subspaces
U1, . . . , Up of E.

We have a map

a : U1 × · · · × Up → E

given by
a(u1, . . . , up) = u1 + · · · + up,

with ui ∈ Ui for i = 1, . . . , p.
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It is clear that this map is linear, and so its image is a
subspace of E denoted by

U1 + · · · + Up

and called the sum of the subspaces U1, . . . , Up.

By definition,

U1 + · · · + Up = {u1 + · · · + up | ui ∈ Ui, 1 ≤ i ≤ p},

and it is immediately verified that U1 + · · · + Up is the
smallest subspace of E containing U1, . . . , Up.

If the map a is injective, then Ker a = 0, which means
that if ui ∈ Ui for i = 1, . . . , p and if

u1 + · · · + up = 0

then u1 = · · · = up = 0.

In this case, every u ∈ U1 + · · · + Up has a unique ex-
pression as a sum

u = u1 + · · · + up,

with ui ∈ Ui, for i = 1, . . . , p.
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It is also clear that for any p nonzero vectors ui ∈ Ui,
u1, . . . , up are linearly independent.

Definition 1.13. For any vector space E and any p ≥ 2
subspaces U1, . . . , Up of E, if the map a defined above is
injective, then the sum U1 + · · · + Up is called a direct
sum and it is denoted by

U1 ⊕ · · · ⊕ Up.

The space E is the direct sum of the subspaces Ui if

E = U1 ⊕ · · · ⊕ Up.

Observe that when the map a is injective, then it is a
linear isomorphism between U1 × · · · × Up and
U1 ⊕ · · · ⊕ Up.

The difference is that U1 × · · · × Up is defined even if
the spaces Ui are not assumed to be subspaces of some
common space.

There are natural injections from each Ei to E denoted
by ini : Ei → E.
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Now, if p = 2, it is easy to determine the kernel of the
map a : U1 × U2 → E. We have

a(u1, u2) = u1 + u2 = 0 iff u1 = −u2, u1 ∈ U1, u2 ∈ U2,

which implies that

Ker a = {(u,−u) | u ∈ U1 ∩ U2}.

Now, U1 ∩ U2 is a subspace of E and the linear map
u �→ (u,−u) is clearly an isomorphism, so Ker a is iso-
morphic to U1 ∩ U2.

As a consequence, we get the following result:

Proposition 1.16.Given any vector space E and any
two subspaces U1 and U2, the sum U1 + U2 is a direct
sum iff U1 ∩ U2 = 0.

Because of the isomorphism

U1 × · · · × Up ≈ U1 ⊕ · · · ⊕ Up,

we have

dim(U1 ⊕ · · · ⊕ Up) = dim(U1) + · · · + dim(Up).
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If E is a direct sum

E = U1 ⊕ · · · ⊕ Up,

since every u ∈ E can be written in a unique way as

u = u1 + · · · + up

for some ui ∈ Ui for i = 1 . . . , p, we can define the maps
πi : E → Ui, called projections , by

πi(u) = πi(u1 + · · · + up) = ui.

It is easy to check that these maps are linear and satisfy
the following properties:

πj ◦ πi =
�
πi if i = j

0 if i �= j,

π1 + · · · + πp = idE.

A function f such that f◦f = f is said to be idempotent .
Thus, the projections πi are idempotent.

Conversely, the following proposition can be shown:



94 CHAPTER 1. BASICS OF LINEAR ALGEBRA

Proposition 1.17. Let E be a vector space. For any
p ≥ 2 linear maps fi : E → E, if

fj ◦ fi =
�
fi if i = j

0 if i �= j,

f1 + · · · + fp = idE,

then if we let Ui = fi(E), we have a direct sum

E = U1 ⊕ · · · ⊕ Up.

We also have the following proposition characterizing idem-
potent linear maps whose proof is also left as an exercise.

Proposition 1.18. For every vector space E, if
f : E → E is an idempotent linear map, i.e., f◦f = f ,
then we have a direct sum

E = Ker f ⊕ Im f,

so that f is the projection onto its image Im f .

We are now ready to prove a very crucial result relating
the rank and the dimension of the kernel of a linear map.
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Theorem 1.19. Let f : E → F be a linear map. For
any choice of a basis (f1, . . . , fr) of Im f , let (u1, . . . , ur)
be any vectors in E such that fi = f (ui), for i =
1, . . . , r. If s : Im f → E is the unique linear map de-
fined by s(fi) = ui, for i = 1, . . . , r, then s is injective,
f ◦ s = id, and we have a direct sum

E = Ker f ⊕ Im s

as illustrated by the following diagram:

Ker f �� E = Ker f ⊕ Im s
f
��

Im f ⊆ F.
s
��

As a consequence,

dim(E) = dim(Ker f )+dim(Im f ) = dim(Ker f )+rk(f ).

Remark: The dimension dim(Ker f ) of the kernel of a
linear map f is often called the nullity of f .

We now derive some important results using Theorem
1.19.
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Proposition 1.20. Given a vector space E, if U and
V are any two subspaces of E, then

dim(U) + dim(V ) = dim(U + V ) + dim(U ∩ V ),

an equation known as Grassmann’s relation.

The Grassmann relation can be very useful to figure out
whether two subspace have a nontrivial intersection in
spaces of dimension > 3.

For example, it is easy to see that in R5, there are sub-
spaces U and V with dim(U) = 3 and dim(V ) = 2 such
that U ∩ V = 0

However, we can show that if dim(U) = 3 and dim(V ) =
3, then dim(U ∩ V ) ≥ 1.

As another consequence of Proposition 1.20, if U and V
are two hyperplanes in a vector space of dimension n, so
that dim(U) = n− 1 and dim(V ) = n− 1, we have

dim(U + V ) ≥ n− 2,

and so, if U �= V , then

dim(U + V ) = n− 2.
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Proposition 1.21. If U1, . . . , Up are any subspaces of
a finite dimensional vector space E, then

dim(U1 + · · · + Up) ≤ dim(U1) + · · · + dim(Up),

and

dim(U1 + · · · + Up) = dim(U1) + · · · + dim(Up)

iff the Uis form a direct sum U1 ⊕ · · · ⊕ Up.

Another important corollary of Theorem 1.19 is the fol-
lowing result:

Proposition 1.22. Let E and F be two vector spaces
with the same finite dimension dim(E) = dim(F ) =
n. For every linear map f : E → F , the following
properties are equivalent:

(a) f is bijective.

(b) f is surjective.

(c) f is injective.

(d) Ker f = 0.
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One should be warned that Proposition 1.22 fails in infi-
nite dimension.

We also have the following basic proposition about injec-
tive or surjective linear maps.

Proposition 1.23. Let E and F be vector spaces, and
let f : E → F be a linear map. If f : E → F is
injective, then there is a surjective linear map r : F →
E called a retraction, such that r◦f = idE. If f : E →
F is surjective, then there is an injective linear map
s : F → E called a section, such that f ◦ s = idF .

The notion of rank of a linear map or of a matrix impor-
tant, both theoretically and practically, since it is the key
to the solvability of linear equations.

Proposition 1.24. Given a linear map f : E → F ,
the following properties hold:

(i) rk(f ) + dim(Ker f ) = dim(E).

(ii) rk(f ) ≤ min(dim(E), dim(F )).
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The rank of a matrix is defined as follows.

Definition 1.14. Given a m×n-matrix A = (ai j), the
rank rk(A) of the matrix A is the maximum number of
linearly independent columns of A (viewed as vectors in
Rm).

In view of Proposition 1.4, the rank of a matrix A is
the dimension of the subspace of Rm generated by the
columns of A.

Let E and F be two vector spaces, and let (u1, . . . , un) be
a basis of E, and (v1, . . . , vm) a basis of F . Let f : E →
F be a linear map, and let M(f ) be its matrix w.r.t. the
bases (u1, . . . , un) and (v1, . . . , vm).
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Since the rank rk(f ) of f is the dimension of Im f , which
is generated by (f (u1), . . . , f (un)), the rank of f is the
maximum number of linearly independent vectors in
(f (u1), . . . , f (un)), which is equal to the number of lin-
early independent columns of M(f ), since F and Rm are
isomorphic.

Thus, we have rk(f ) = rk(M(f )), for every matrix rep-
resenting f .

We will see later, using duality, that the rank of a ma-
trix A is also equal to the maximal number of linearly
independent rows of A.
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1.8 The Dual Space E∗ and Linear Forms

We already observed that the field K itself (K = R or
K = C) is a vector space (over itself).

The vector space Hom(E,K) of linear maps f : E → K,
the linear forms , plays a particular role.

We take a quick look at the connection between E and
E∗ = Hom(E,K), its dual space .

As we will see shortly, every linear map f : E → F gives
rise to a linear map f� : F ∗ → E∗, and it turns out that
in a suitable basis, the matrix of f� is the transpose of
the matrix of f .

Thus, the notion of dual space provides a conceptual ex-
planation of the phenomena associated with transposi-
tion.

But it does more, because it allows us to view subspaces
as solutions of sets of linear equations and vice-versa.
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Definition 1.15. Given a vector space E, the vector
space Hom(E,K) of linear maps f : E → K is called
the dual space (or dual) of E. The space Hom(E,K) is
also denoted by E∗, and the linear maps in E∗ are called
the linear forms , or covectors . The dual space E∗∗ of
the space E∗ is called the bidual of E.

As a matter of notation, linear forms f : E → K will also
be denoted by starred symbol, such as u∗, x∗, etc.

IfE is a vector space of finite dimension n and (u1, . . . , un)
is a basis of E, for any linear form f ∗ ∈ E∗, for every
x = x1u1 + · · · + xnun ∈ E, we have

f ∗(x) = λ1x1 + · · · + λnxn,

where λi = f ∗(ui) ∈ K, for every i, 1 ≤ i ≤ n.

Thus, with respect to the basis (u1, . . . , un), f ∗(x) is a
linear combination of the coordinates of x, and we can
view a linear form as a linear equation .
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Given a linear form u∗ ∈ E∗ and a vector v ∈ E, the
result u∗(v) of applying u∗ to v is also denoted by �u∗, v�.

This defines a binary operation �−,−� : E∗ × E → K
satisfying the following properties:

�u∗1 + u∗2, v� = �u∗1, v� + �u∗2, v�
�u∗, v1 + v2� = �u∗, v1� + �u∗, v2�

�λu∗, v� = λ�u∗, v�
�u∗, λv� = λ�u∗, v�.

The above identities mean that �−,−� is a bilinear map,
since it is linear in each argument.

It is often called the canonical pairing between E∗ and
E.
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In view of the above identities, given any fixed vector v ∈
E, the map evalv : E∗ → K (evaluation at v) defined
such that

evalv(u
∗) = �u∗, v� = u∗(v)

for every u∗ ∈ E∗ is a linear map from E∗ to K, that is,
evalv is a linear form in E∗∗.

Again from the above identities, the map
evalE : E → E∗∗, defined such that

evalE(v) = evalv

for every v ∈ E, is a linear map.

We shall see that it is injective, and that it is an isomor-
phism when E has finite dimension.
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Definition 1.16. Given a vector space E and its dual
E∗, we say that a vector v ∈ E and a linear form u∗ ∈ E∗

are orthogonal iff �u∗, v� = 0. Given a subspace V of
E and a subspace U of E∗, we say that V and U are
orthogonal iff �u∗, v� = 0 for every u∗ ∈ U and every
v ∈ V . Given a subset V of E (resp. a subset U of E∗),
the orthogonal V 0 of V is the subspace V 0 of E∗ defined
such that

V 0 = {u∗ ∈ E∗ | �u∗, v� = 0, for every v ∈ V }

(resp. the orthogonal U 0 of U is the subspace U 0 of E
defined such that

U 0 = {v ∈ E | �u∗, v� = 0, for every u∗ ∈ U}).
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Informally, V 0 is the set of linear equations that vanish
on V , and U 0 is the set of common zeros of all linear
equations in U . We can also define V 0 by

V 0 = {u∗ ∈ E∗ | V ⊆ Keru∗}

and U 0 by

U 0 =
�

u∗∈U
Keru∗.

Observe that E0 = 0, and {0}0 = E∗.

It is also easy to see that if M ⊆ N ⊆ E, then
N 0 ⊆ M 0 ⊆ E∗.

It can also be shown that that V ⊆ V 00 for every sub-
space V of E, and that U ⊆ U 00 for every subspace U of
E∗.
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We will see shortly that in finite dimension, we have

V = V 00 and U = U 00.

Given a vector space E and any basis (ui)i∈I for E, we
can associate to each ui a linear form u∗i ∈ E∗, and the
u∗i have some remarkable properties.

Definition 1.17. Given a vector space E and any basis
(ui)i∈I for E, by Proposition 1.9, for every i ∈ I , there is
a unique linear form u∗i such that

u∗i (uj) =

�
1 if i = j
0 if i �= j,

for every j ∈ I . The linear form u∗i is called the coordi-
nate form of index i w.r.t. the basis (ui)i∈I .



108 CHAPTER 1. BASICS OF LINEAR ALGEBRA

Remark: Given an index set I , authors often define the
so called Kronecker symbol δi j, such that

δi j =

�
1 if i = j
0 if i �= j,

for all i, j ∈ I .

Then,
u∗i (uj) = δi j.

The reason for the terminology coordinate form is as
follows: If E has finite dimension and if (u1, . . . , un) is a
basis of E, for any vector

v = λ1u1 + · · · + λnun,

we have

u∗i (v) = λi.

Therefore, u∗i is the linear function that returns the ith co-
ordinate of a vector expressed over the basis (u1, . . . , un).

We have the following important duality theorem.
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Theorem 1.25. (Duality theorem) Let E be a vector
space of dimension n. The following properties hold:

(a) For every basis (u1, . . . , un) of E, the family of co-
ordinate forms (u∗1, . . . , u

∗
n) is a basis of E∗.

(b) For every subspace V of E, we have V 00 = V .

(c) For every pair of subspaces V and W of E such
that E = V ⊕W , with V of dimension m, for every
basis (u1, . . . , un) of E such that (u1, . . . , um) is a
basis of V and (um+1, . . . , un) is a basis of W , the
family (u∗1, . . . , u

∗
m) is a basis of the orthogonal W 0

of W in E∗. Furthermore, we have W 00 = W , and

dim(W ) + dim(W 0) = dim(E).

(d) For every subspace U of E∗, we have

dim(U) + dim(U 0) = dim(E),

where U 0 is the orthogonal of U in E, and
U 00 = U .
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Part (a) of Theorem 1.25 shows that

dim(E) = dim(E∗),

and if (u1, . . . , un) is a basis of E, then (u∗1, . . . , u
∗
n) is

a basis of the dual space E∗ called the dual basis of
(u1, . . . , un).

By part (c) and (d) of theorem 1.25, the maps V �→ V 0

and U �→ U 0, where V is a subspace of E and U is a
subspace of E∗, are inverse bijections.

These maps set up a duality between subspaces of E, and
subspaces of E∗.

� One should be careful that this bijection does not hold
if E has infinite dimension. Some restrictions on the

dimensions of U and V are needed.
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When E is of finite dimension n and (u1, . . . , un) is a
basis of E, we noted that the family (u∗1, . . . , u

∗
n) is a

basis of the dual space E∗,

Let us see how the coordinates of a linear form ϕ∗ ∈ E∗

over the basis (u∗1, . . . , u
∗
n) vary under a change of basis.

Let (u1, . . . , un) and (v1, . . . , vn) be two bases of E, and
let P = (ai j) be the change of basis matrix from (u1, . . . , un)
to (v1, . . . , vn), so that

vj =
n�

i=1

ai jui.

If

ϕ∗ =
n�

i=1

ϕiu
∗
i =

n�

i=1

ϕ�
iv

∗
i ,

after some algebra, we get

ϕ�
j =

n�

i=1

ai jϕi.



112 CHAPTER 1. BASICS OF LINEAR ALGEBRA

Comparing with the change of basis

vj =
n�

i=1

ai jui,

we note that this time, the coordinates (ϕi) of the linear
form ϕ∗ change in the same direction as the change of
basis.

For this reason, we say that the coordinates of linear forms
are covariant .

By abuse of language, it is often said that linear forms
are covariant , which explains why the term covector is
also used for a linear form.

Observe that if (e1, . . . , en) is a basis of the vector space
E, then, as a linear map from E to K, every linear form
f ∈ E∗ is represented by a 1 × n matrix, that is, by a
row vector

(λ1 · · · λn),

with respect to the basis (e1, . . . , en) of E, and 1 of K,
where f (ei) = λi.



1.8. THE DUAL SPACE E∗ AND LINEAR FORMS 113

A vector u =
�n

i=1 uiei ∈ E is represented by a n × 1
matrix, that is, by a column vector




u1
...
un



 ,

and the action of f on u, namely f (u), is represented by
the matrix product

�
λ1 · · · λn

�



u1
...
un



 = λ1u1 + · · · + λnun.

On the other hand, with respect to the dual basis (e∗1, . . . , e
∗
n)

of E∗, the linear form f is represented by the column vec-
tor




λ1
...
λn



 .
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We will now pin down the relationship between a vector
space E and its bidual E∗∗.

Proposition 1.26. Let E be a vector space. The fol-
lowing properties hold:

(a) The linear map evalE : E → E∗∗ defined such that

evalE(v) = evalv,

that is, evalE(v)(u∗) = �u∗, v� = u∗(v) for every
u∗ ∈ E∗, is injective.

(b) When E is of finite dimension n, the linear map
evalE : E → E∗∗ is an isomorphism (called the
canonical isomorphism).

When E is of finite dimension and (u1, . . . , un) is a basis
of E, in view of the canonical isomorphism
evalE : E → E∗∗, the basis (u∗∗1 , . . . , u∗∗n ) of the bidual is
identified with (u1, . . . , un).

Proposition 1.26 can be reformulated very fruitfully in
terms of pairings.
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Definition 1.18. Given two vector spaces E and F
over K, a pairing between E and F is a bilinear map
�−,−� : E × F → K. Such a pairing is nondegenerate
iff for every u ∈ E, if �u, v� = 0 for all v ∈ F , then
u = 0, and for every v ∈ F , if �u, v� = 0 for all u ∈ E,
then v = 0.

For example, the map �−,−� : E∗ × E → K defined
earlier is a nondegenerate pairing (use the proof of (a) in
Proposition 1.26).

Given a pairing �−,−� : E ×F → K, we can define two
maps

ϕ : E → F ∗ and ψ : F → E∗

as follows: For every u ∈ E, we define the linear form
ϕ(u) in F ∗ such that

ϕ(u)(y) = �u, y�

for every y ∈ F , and for every v ∈ F , we define the linear
form ψ(v) in E∗ such that

ψ(v)(x) = �x, v�

for every x ∈ E.
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We have the following useful proposition.

Proposition 1.27.Given two vector spaces E and F
over K, for every nondegenerate pairing �−,−� : E ×
F → K between E and F , the maps ϕ : E → F ∗ and
ψ : F → E∗ are linear and injective. Furthermore, if
E and F have finite dimension, then this dimension
is the same and ϕ : E → F ∗ and ψ : F → E∗ are
bijections.

When E has finite dimension, the nondegenerate pair-
ing �−,−� : E∗ × E → K yields another proof of the
existence of a natural isomorphism between E and E∗∗.

Interesting nondegenerate pairings arise in exterior alge-
bra.
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1.9 Hyperplanes and Linear Forms

Actually, Proposition 1.28 below follows from parts (c)
and (d) of Theorem 1.25, but we feel that it is also inter-
esting to give a more direct proof.

Proposition 1.28. Let E be a vector space. The fol-
lowing properties hold:

(a) Given any nonnull linear form f ∗ ∈ E∗, its kernel
H = Ker f ∗ is a hyperplane.

(b) For any hyperplane H in E, there is a (nonnull)
linear form f ∗ ∈ E∗ such that H = Ker f ∗.

(c) Given any hyperplane H in E and any (nonnull)
linear form f ∗ ∈ E∗ such that H = Ker f ∗, for
every linear form g∗ ∈ E∗, H = Ker g∗ iff g∗ = λf ∗

for some λ �= 0 in K.

We leave as an exercise the fact that every subspace
V �= E of a vector space E, is the intersection of all
hyperplanes that contain V .

We now consider the notion of transpose of a linear map
and of a matrix.
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1.10 Transpose of a Linear Map and of a Matrix

Given a linear map f : E → F , it is possible to define a
map f� : F ∗ → E∗ which has some interesting proper-
ties.

Definition 1.19. Given a linear map f : E → F , the
transpose f� : F ∗ → E∗ of f is the linear map defined
such that

f�(v∗) = v∗ ◦ f,

for every v∗ ∈ F ∗.

Equivalently, the linear map f� : F ∗ → E∗ is defined
such that

�v∗, f (u)� = �f�(v∗), u�,

for all u ∈ E and all v∗ ∈ F ∗.
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It is easy to verify that the following properties hold:

(f + g)� = f� + g�

(g ◦ f )� = f� ◦ g�

id�E = idE∗.

� Note the reversal of composition on the right-hand side
of (g ◦ f )� = f� ◦ g�.

If E is finite-dimensional and if we identify E with its
bidual E∗∗, then

(f�)� = f.

Proposition 1.29. Given a linear map f : E → F ,
for any subspace U of E, we have

f (U)0 = (f�)−1(U 0) = {v∗ ∈ F ∗ | f�(v∗) ∈ U 0}.

As a consequence,

Ker f� = (Im f )0 and Ker f = (Im f�)0.



120 CHAPTER 1. BASICS OF LINEAR ALGEBRA

The following theorem shows the relationship between the
rank of f and the rank of f�.

Theorem 1.30. Given a linear map f : E → F , the
following properties hold.

(a) The dual (Im f )∗ of Im f is isomorphic to
Im f� = f�(F ∗); that is,

(Im f )∗ ≈ Im f�.

(b) If F is finite dimensional, then rk(f ) = rk(f�).

The following proposition shows the relationship between
the matrix representing a linear map f : E → F and the
matrix representing its transpose f� : F ∗ → E∗.
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Proposition 1.31. Let E and F be two vector spaces,
and let (u1, . . . , un) be a basis for E, and (v1, . . . , vm)
be a basis for F . Given any linear map f : E → F ,
if M(f ) is the m × n-matrix representing f w.r.t.
the bases (u1, . . . , un) and (v1, . . . , vm), the n × m-
matrix M(f�) representing f� : F ∗ → E∗ w.r.t. the
dual bases (v∗1, . . . , v

∗
m) and (u∗1, . . . , u

∗
n) is the trans-

pose M(f )� of M(f ).

We now can give a very short proof of the fact that the
rank of a matrix is equal to the rank of its transpose.

Proposition 1.32. Given a m × n matrix A over a
field K, we have rk(A) = rk(A�).

Thus, given an m × n-matrix A, the maximum number
of linearly independent columns is equal to the maximum
number of linearly independent rows.

Proposition 1.32 immediately yields the following crite-
rion for determining the rank of a matrix:
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Proposition 1.33.Given any m×n matrix A over a
field K (typically K = R or K = C), the rank of A is
the maximum natural number r such that there is an
invertible r × r submatrix of A obtained by selecting
r rows and r columns of A.

For example, the 3× 2 matrix

A =




a11 a12
a21 a22
a31 a32





has rank 2 iff one of the three 2× 2 matrices
�
a11 a12
a21 a22

� �
a11 a12
a31 a32

� �
a21 a22
a31 a32

�

is invertible. We will see in Chapter 2 that this is equiv-
alent to the fact the determinant of one of the above
matrices is nonzero.

This is not a very efficient way of finding the rank of
a matrix. We will see that there are better ways using
various decompositions such as LU, QR, or SVD.
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1.11 The Four Fundamental Subspaces

Given a linear map f : E → F (where E and F are
finite-dimensional), Proposition 1.29 revealed that the
four spaces

Im f, Im f�, Ker f, Ker f�

play a special role. They are often called the fundamental
subspaces associated with f .

These spaces are related in an intimate manner, since
Proposition 1.29 shows that

Ker f = (Im f�)0

Ker f� = (Im f )0,

and Theorem 1.30 shows that

rk(f ) = rk(f�).



124 CHAPTER 1. BASICS OF LINEAR ALGEBRA

It is instructive to translate these relations in terms of
matrices (actually, certain linear algebra books make a
big deal about this!).

If dim(E) = n and dim(F ) = m, given any basis (u1, . . .,
un) of E and a basis (f1, . . . , fm) of F , we know that f
is represented by an m× n matrix A = (ai j), where the
jth column of A is equal to f (ej).

Furthermore, the transpose map f� is represented by the
n×m matrix A� (with respect to the dual bases).

Consequently, the four fundamental spaces

Im f, Im f�, Ker f, Ker f�

correspond to
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(1) The column space of A, denoted by ImA or R(A);
this is the subspace of Rm spanned by the columns of
A, which corresponds to image Im f of f .

(2) The kernel or nullspace of A, denoted by KerA or
N (A); this is the subspace of Rn consisting of all
vectors x ∈ Rn such that Ax = 0.

(3) The row space of A, denoted by ImA� or R(A�);
this is the subspace of Rn spanned by the rows of A,
or equivalently, spanned by the columns of A�, which
corresponds to image Im f� of f�.

(4) The left kernel or left nullspace of A denoted by
KerA� orN (A�); this is the kernel (nullspace) ofA�,
the subspace of Rm consisting of all vectors y ∈ Rm

such that A�y = 0, or equivalently, y�A = 0.

Recall that the dimension r of Im f , which is also equal
to the dimension of the column space ImA = R(A), is
the rank of A (and f ).
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Then, some our previous results can be reformulated as
follows:

1. The column space R(A) of A has dimension r.

2. The nullspace N (A) of A has dimension n− r.

3. The row space R(A�) has dimension r.

4. The left nullspace N (A�) of A has dimension m− r.

The above statements constitute what Strang calls the
Fundamental Theorem of Linear Algebra, Part I (see
Strang [28]).
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The two statements

Ker f = (Im f�)0

Ker f� = (Im f )0

translate to

(1) The nullspace of A is the orthogonal of the row space
of A.

(2) The left nullspace ofA is the orthogonal of the column
space of A.

The above statements constitute what Strang calls the
Fundamental Theorem of Linear Algebra, Part II (see
Strang [28]).

Since vectors are represented by column vectors and linear
forms by row vectors (over a basis in E or F ), a vector
x ∈ Rn is orthogonal to a linear form y if

yx = 0.
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Then, a vector x ∈ Rn is orthogonal to the row space of
A iff x is orthogonal to every row of A, namely
Ax = 0, which is equivalent to the fact that x belong to
the nullspace of A.

Similarly, the column vector y ∈ Rm (representing a
linear form over the dual basis of F ∗) belongs to the
nullspace of A� iff A�y = 0, iff y�A = 0, which means
that the linear form given by y� (over the basis in F ) is
orthogonal to the column space of A.

Since (2) is equivalent to the fact that the column space
of A is equal to the orthogonal of the left nullspace of
A, we get the following criterion for the solvability of an
equation of the form Ax = b:

The equation Ax = b has a solution iff for all y ∈ Rm, if
A�y = 0, then y�b = 0.
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Indeed, the condition on the right-hand side says that b
is orthogonal to the left nullspace of A, that is, that b
belongs to the column space of A.

This criterion can be cheaper to check that checking di-
rectly that b is spanned by the columns of A. For exam-
ple, if we consider the system

x1 − x2 = b1
x2 − x3 = b2
x3 − x1 = b3

which, in matrix form, is written Ax = b as below:



1 −1 0
0 1 −1
−1 0 1








x1
x2
x3



 =




b1
b2
b3



 ,

we see that the rows of the matrix A add up to 0.
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In fact, it is easy to convince ourselves that the left nullspace
of A is spanned by y = (1, 1, 1), and so the system is solv-
able iff y�b = 0, namely

b1 + b2 + b3 = 0.

Note that the above criterion can also be stated negatively
as follows:

The equation Ax = b has no solution iff there is some
y ∈ Rm such that A�y = 0 and y�b �= 0.


