
CIS 5110
Introduction to the Theory of Computation

Motivations, Problems

Jean Gallier

October 17, 2024



2



Chapter 1

Motivations, Problems

What is the Theory of Computation?

Roughly three overlapping topics:

(1) Languages and Automata.

(2) Computability, Decidability, Undecidability.

(3) Complexity.

It started with (2) at the end of the 1800’s, mostly by the
impetus of Hilbert.

The field takes off in the early 1930’s triggered by the
incompleteness results of Gödel (1931), and additional
seminal work by Church, Kleene, Rosser, Turing, and
Post.

3



4 CHAPTER 1. MOTIVATIONS, PROBLEMS

1. Languages and Automata.

What is a language?

How do we define a language?

How we recognize words in a language (parsing).

Machinery: automata and grammars.

DFA’s, NFA’s, context-free grammars (Chomsky).

Mature theory with practical applications: construction
of the front-end of compilers .

Lexical analyzers and lexical analyzer generators.

Parser and parser generators (LALR(1) parsers).

More advanced and still very active: natural language
recognization, computational linguistics .



5

2. Computability Decidability, Undecidability

Many of the problems arose from logic.

(1) What is a computable function?

(2) Can we decide whether a function (or a program) ter-
minates for a given input.

(3) What is a proof ?

(4) Can we decide whether a proposition is provable or
not? What does this mean?

(5) Can theorem-proving or proof-checking be automated?
What does this mean?

(6) More generally, when is a problem decidable, and
what does this mean.

Unfortunately, in general the answer is almost always
no!



6 CHAPTER 1. MOTIVATIONS, PROBLEMS

Here is an example showing that deciding whether a func-
tion is defined for all inputs is tricky.

The “3n + 1 problem” proposed by Collatz around 1937
is the following:

Given any positive integer n ≥ 1, construct the sequence
ci(n) as follows starting with i = 1:

c1(n) = n

ci+1(n) =

{
ci(n)/2 if ci(n) is even

3ci(n) + 1 if ci(n) is odd.

Observe that for n = 1, we get the infinite periodic se-
quence

1 =⇒ 4 =⇒ 2 =⇒ 1 =⇒ 4 =⇒ 2 =⇒ 1 =⇒ · · · ,

so we may assume that we stop the first time that the
sequence ci(n) reaches the value 1 (if it actually does).



7

Such an index i is called the stopping time of the se-
quence. For our previous example, i = 4.

Starting with n = 3, we get the sequence

3 =⇒ 10 =⇒ 5 =⇒ 16 =⇒ 8 =⇒ 4 =⇒ 2 =⇒ 1.

Starting with n = 5, we get the sequence

5 =⇒ 16 =⇒ 8 =⇒ 4 =⇒ 2 =⇒ 1.

Starting with n = 6, we get the sequence

6 =⇒ 3 =⇒ 10 =⇒ 5 =⇒ 16 =⇒ 8 =⇒ 4 =⇒ 2 =⇒ 1.

Starting with n = 7, we get the sequence

7 =⇒ 22 =⇒ 11 =⇒ 34 =⇒ 17 =⇒ 52 =⇒ 26 =⇒ 13 =⇒
40 =⇒ 20 =⇒ 10 =⇒ 5 =⇒ 16 =⇒ 8 =⇒ 4 =⇒ 2 =⇒ 1.

One might be surprised to find that for n = 27, it takes
111 steps to reach 1, and for n = 97, it takes 118 steps.



8 CHAPTER 1. MOTIVATIONS, PROBLEMS

I computed the stopping times for n up to 107 and found
that the largest stopping time, 686 (685 steps), is obtained
for n = 8400511.

The terms of this sequence reach values over 1.5 × 1011.
The graph of the sequence c(8400511) is shown in Figure
1.1.

0 100 200 300 400 500 600 700
0

2

4

6

8

10

12

14

16 #10
10

Figure 1.1: Graph of the sequence for n = 8400511.



9

We can define the (partial) function C (with positive in-
teger inputs) defined by

C(n) = the smallest i such that ci(n) = 1 if it exists.

The graph of the function C for 1 ≤ n ≤ 107 is shown in
Figure 1.2.

Figure 1.2: Graph of the function C for 1 ≤ n ≤ 107.



10 CHAPTER 1. MOTIVATIONS, PROBLEMS

Conjecture (Collatz):

For any starting integer value n ≥ 1, the sequence (ci(n))
always reaches 1.

So far, the conjecture remains open. It has been checked
by compuer for all integers less than or equal to 87× 260.



11

Another deceptively hard problem:

Deciding wheher a polynomial with integer coefficients
has some integer solution which gives it the value zero.

The equation

x2 + y2 − z2 = 0

has the solution x = 3, y = 4, z = 5, since 32 + 42 =
9 + 16 = 25 = 52.

The equation

x3 + y3 + z3 − 29 = 0

has the solution x = 3, y = 1, z = 1.



12 CHAPTER 1. MOTIVATIONS, PROBLEMS

What about the equation

x3 + y3 + z3 − 30 = 0?

Amazingly, the only known integer solution is

(x, y, z) = (−283059965,−2218888517, 2220422932),

discovered in 1999 by E. Pine, K. Yarbrough, W. Tar-
rant, and M. Beck, following an approach suggested by
N. Elkies.

And what about solutions of the equation

x3 + y3 + z3 − 33 = 0?

Until 2019 it was still an open problem.



13

Andrew Booker found the following amazing solution:

(8, 866, 128, 975, 287, 528)3

+ (−8, 778, 405, 442, 862, 239)3

+ (−2, 736, 111, 468, 807, 040)3 = 33.

In 1900, at the International Congress of Mathematicians
held in Paris, the famous mathematician David Hilbert
presented a list of ten open mathematical problems.

Soon after, Hilbert published a list of 23 problems. The
tenth problem is this:

Hilbert’s tenth problem (H10)

Find an algorithm that solves the following problem:

Given as input a polynomial P ∈ Z[x1, . . . , xn] with inte-
ger coefficients, return YES or NO, according to whether
there exist integers a1, . . . , an ∈ Z so that P (a1, . . . , an) =
0; that is, the Diophantine equation P (x1, . . . , xn) = 0
has a solution.



14 CHAPTER 1. MOTIVATIONS, PROBLEMS

It is important to note that at the time Hilbert proposed
his tenth problem, a rigorous mathematical definition
of the notion of algorithm did not exist.

In fact, the machinery needed to even define the notion
of algorithm did not exist.

It is only around 1930 that precise definitions of the notion
of computability due to Turing, Church, and Kleene, were
formulated, and soon after shown to be all equivalent.

In 1970, the following somewhat surprising resolution of
Hilbert’s tenth problem was reached:

Theorem (Davis-Putnam-Robinson-Matiyasevich)

Hilbert’s tenth problem is undecidable; that is, there
is no algorithm for solving Hilbert’s tenth problem.



15

Amazingly, all known models of computation (to define
the notion of computable function) are equivalent .

They all define the same class, the partial computable
functions in the sense of Gödel and Kleene.

We will discuss the following computation models and
sketch some of their equivalences:

(1) RAM programs.

(2) Turing Machines.

(3) The class of partial computable functions in the sense
of Gödel and Kleene.

(4) The functions definable in the λ-calculus of Church .
Most functional programming languages (e.g., OCaml,
see CIS 120) are based on the λ-calculus

(5) Diophantine definability (integer solutions of polyno-
mials with integer coefficients).



16 CHAPTER 1. MOTIVATIONS, PROBLEMS

We will also define what it means for a problem to be
decidable (or undecidable).

We will see that essentially all nontrivial problems are
undecidable; see Rice’s theorem.

3. Complexity

Even if a problem is theoretically solvable (there is an
algorithm for it), in practice , all known algorithms may
take too much time or too much space (say exponen-
tial).

In the 1970’s, Cook, Karp, and Levin argued that a prac-
tical algorithm should run in polynomial time (in the
length of the input).

This yields the class P .



17

It was observed that there are many problems for which
no known polynomial-time algorithm exists , but if we
allow guessing a solution (for free) and if we can check
the solution in polynomial time , then these problems
are solvable.

This yields the class NP .

Obviously P ⊆ NP but

nobody knows whether P = NP!

This is The big question of theoretical computer science.
A price of a million dollars is offered for its solution!

Two examples of problems in NP .



18 CHAPTER 1. MOTIVATIONS, PROBLEMS

1. 0-1-Integer Programming

Consider the 5×6 matrixA and the vector b shown below:

A =


1 −2 1 3 −1 4
2 2 −1 0 1 −1
−1 1 2 3 −2 3
3 1 −1 2 −1 4
0 1 −1 1 1 2

 , b =


9
0
7
8
2

 .

Problem: Is there a solution x = (x1, x2, x3, x4, x5, x6)
of the linear system

1 −2 1 3 −1 4
2 2 −1 0 1 −1
−1 1 2 3 −2 3
3 1 −1 2 −1 4
0 1 −1 1 1 2




x1
x2
x3
x4
x5
x6

 =


9
0
7
8
2


with xi ∈ {0, 1}?

Yes!

x = (1, 0, 1, 1, 0, 1).



19

If the system has n variables, it takes 2n guesses for x,
but checking that x works is cheap (polynomial time).

2. Finding a Hamiltonian Cycle

Given a (directed) graph, G, a Hamiltonian cycle is a
cycle that passes through all the nodes exactly once (note,
some edges may not be traversed at all).

Figure 1.3: A tour “around the world.”

Finding a Hamiltonian cycle in this graph does not appear
to be so easy!



20 CHAPTER 1. MOTIVATIONS, PROBLEMS

A solution is shown in Figure 1.4 below.

v18
v17

v11
v12 v13

v10
v6

v5

v4

v14

v19

v9

v8

v7 v3

v2

v15

v16

v1

v20

Figure 1.4: A Hamiltonian cycle in D.

Again, in general, there is an exponential number of guesses,
but given a cycle, by following it we check that it works
in polynomial time.



21

Amazingly, these problems are equivalent, in the sense
that it is possible to translate one into the other in poly-
omial time!

These problems are NP-complete.

This means that every problem in NP can be translated
into them in polynomial time.

We will investigate a number of NP-complete problems.

One of the most important ones is the satisfiability prob-
lem (SAT) for propositions in CNF.

We will also look at other complexity classes besides P
and NP , namely co−NP and PS (Pspace).

They also have complete problems (TAUT and QBF).



22 CHAPTER 1. MOTIVATIONS, PROBLEMS

A problem of particular interest is primality testing .

Is 3 215 031 751 prime?

No, because

3 215 031 751 = 151 · 751 · 28351.

If we can guess a factorization, then checking that it works
is cheap.

But if our number n is prime, what do we guess and then
check in polynomial time to show that n is indeed prime.

Is 474 397 531 prime?

Yes!



23

Around 1975, V. Pratt found a method (based on the
Lucas test). This shows that primality testing is in NP .

Remarkably, in 2002, it was shown by Agrawal, Kayal
and Saxena that primality testing is actually in P .

This is a very hard theorem, and it is not really practical.

Randomized methods are much cheaper.

Unfortunately we probably won’t have time to discuss
primality testing, but you should be aware of it.


