Chapter 4
Hidden Markov Models (HMMs)

4.1 Definition of a Hidden Markov Model (HMM)

There is a variant of the notion of DFA with output, for
example a transducer such as a gsm (generalized sequen-
tial machine), which is widely used in machine learning.

This machine model is known as hidden Markov model,
for short HMM .
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Example 4.1. Say we consider the following behavior
of some professor at some university:.

On a hot day (denoted by Hot), the professor comes to
class with a drink (denoted D) with probability 0.7, and
with no drink (denoted N) with probability 0.3.

On the other hand, on a cold day (denoted Cold), the
professor comes to class with a drink with probability
0.2, and with no drink with probability 0.8.

Suppose a student intrigued by this behavior recorded
a sequence showing whether the professor came to class
with a drink or not, say NNND.

Several months later, the student would like to know
whether the weather was hot or cold the days he recorded
the drinking behavior of the professor.
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Now the student heard about machine learning, so he
constructs a probabilistic (hidden Markov) model of the
weather.

Based on some experiments, he determines the probabil-
ity of a going from a hot day to another hot day to be
0.75, the probability of a going from a hot day to a cold
day to be 0.25, the probability of going from a cold day to
another cold day to be 0.7, and the probability of going
from a cold day to a hot day to be 0.3.

He also knows that when he started his observations, it
was a cold day with probability 0.45, and a hot day with
probability 0.55.

The above data determine an HMM depicted in Figure
4.1.
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0.7

®

Figure 4.1: Example of an HMM modeling the “drinking behavior” of a professor at the
University of Pennsylvania.

In this example, the set of states is ( = {Cold, Hot}, and
the set of outputs is @ = {N, D}.

We have the bijection o: {Cold, Hot} — {1,2} given
by o(Cold) = 1 and o(Hot) = 2, and the bijection
w: {N,D} — {1,2} given by w(N) =1 and w(D) = 2.
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The portion of the state diagram involving the states
Cold, Hot, is analogous to an NFA in which the tran-
sition labels are probabilities; it is the underlying Markov
model of the HMM.

For any given state, the probabilities of the outgoing edges
sum to 1.

The start state is a convenient way to express the proba-
bilities of starting either in state Cold or in state Hot.

Also, from each of the states Cold and Hot, we have emis-
sion probabilities of producing the ouput N or D, and

these probabilities also sum to 1.

We can also express these data using matrices.
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The matrix
0.7 0.3

0.25 0.75

describes the transitions of the Markov model,

the vector

0.45
0.55

mT =

describes the probabilities of starting either in state Cold
or in state Hot,

and the matrix

0.8 0.2
0.3 0.7

describes the emission probabilities.
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The student would like to solve what 1s known as the
decoding problem.

Namely, given the output sequence NNND, find the
most likely state sequence of the Markov model that
produces the output sequence NNND.

Is it (Cold, Cold, Cold, Cold), or (Hot, Hot, Hot, Hot), or
(Hot, Cold, Cold, Hot), or (Cold, Cold, Cold, Hot)?

Given the probabilities of the HMM, it seems unlikely
that it is (Hot, Hot, Hot, Hot), but how can we find the
most likely one?
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The notion of HMM involves three new twists compared
to traditional gsm models:

(1) There is a finite set of states @) with n elements, a
bijection o: @ — {1,...,n}, and the transitions
between states are labeled with probabilities rather
that symbols from an alphabet. For any two states
p and ¢ in @), the edge from p to ¢ is labeled with a
probability A(i, 7), with ¢ = o(p) and j = o(q).

The probabilities A(7, j) form an n X n matrix A =
(A(2,7))-

(2) There is a finite set O of size m (called the observa-
tion space) of possible outputs that can be emitted,
a bijection w: @ — {1,...,m}, and for every state
q € Q, there is a probability B(i,j) that output
O € O is emitted (produced), with ¢ = o(q) and
j=w(0).
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The probabilities B(i, 7) form an n x m matrix B =
(B(i,7))-

(3) Sequences of outputs O = (Oy,...,Or) (with O; €
O for t = 1,...,T) emitted by the model are di-
rectly observable, but the sequences of states § =
(qi,....qr) (with ¢ € Q for t = 1,...,T) that
caused some sequence of output to be emitted are
not observable.

In this sense the states are hidden, and this is the
reason for calling this model a hidden Markov model.
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Before going any further, we wish to address a notational
Issue.

The 1ssue 1s how to denote the states, the ouputs, as
well as (ordered) sequences of states and sequences of
output.

In most problems, states and outputs have “meaningtul”
names.

For example, if we wish to describe the evolution of the
temperature from day to day, it makes sense to use two

states “Cold” and “Hot,” and to describe whether a given
individual has a drink by “D,” and no drink by “N.”

Thus our set of states is Q = {Cold, Hot}, and our set of
outputs is @ = {N, D}.
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However, when computing probabilities, we need to use
matrices whose rows and columns are indexed by positive
integers, so we need a mechanism to associate a numer-
wcal index to every state and to every output, and this
is the purpose of the bijections o: @ — {1,...,n} and
w: O—A{1,...,m}.

In our example, we define o by o(Cold) = 1 and o(Hot) =
2, and w by w(N) =1 and w(D) = 2.

Some author circumvent (or do they?) this notational
issue by assuming that the set of outputsis @ = {1, 2, .. .,
m}, and that the set of states is Q@ = {1,2,...,n}.

The disadvantage of doing this is that in “real” situations,
it is often more convenient to name the outputs and the
states with more meaningtul names than 1, 2, 3 etc.

Warning: The task of naming the elements of the out-
put alphabet can be challenging, for example in speech
recognition.
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Let us now turn to sequences.

For example, consider the sequence of six states (from the

set () = {Cold, Hot}),

S = (Cold, Cold, Hot, Cold, Hot, Hot).

Using the bijection o: {Cold, Hot} — {1,2} defined above,
the sequence S is completely determined by the sequence
of indices

o(S) = (o(Cold), o(Cold), o(Hot), o(Cold),
o(Hot),o(Hot)) = (1,1,2,1,2,2).

More generally, we will denote a sequence of length T' of
states from a set () of size n by

SI(Ql,QQ,---,QT),
with g € Qfort=1,...,T.
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Using the bijection o: @ — {1,...,n}, the sequence S
is completely determined by the sequence of indices

o(S) = (o(q1),0(q2),---,0(qr)),

where o(q;) is some index from the set {1,...,n}, for
t=1,....T.

The problem now is, what is a better notation for the
index denoted by o(q)?

Of course, we could use o(q;), but this is a heavy notation,
so we adopt the notational convention to denote the
index o(q;) by iy.

Remark: We contemplated using the notation o; for
o(q;) instead of i;. However, we feel that this would de-
viate too much from the common practice found in the
literature, which uses the notation ;.
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Going back to our example

S = (Q17 q2, 43, 44, 44, Q6) :(C()ldv COldv HOt) COldv
Hot, Hot),

we have

);0(qu),

o(S) = (o(q1),0(q2), (g3
= (1,1,2,1,2,2),

7(¢5),0(ds))

so the sequence of indices
(7:17 7:27 i37 i47 i57 Zﬁ) — (O-(Q1)7 O-(qQ)v O-(Q?))) O'(Q4>, O-(QE));
o(qs)) is given by

U(S> — (i17i27i37i47i57i6) — (17 1727 17272>

So, the fourth index 74 is has the value 1.
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We apply a similar convention to sequences of outputs.

For example, consider the sequence of six outputs (from
the set @ = {N,D}),

O = (N,D,N,N, N, D).

Using the bijection w: {N,D} — {1,2} defined above,
the sequence O is completely determined by the sequence
of indices

w(0) = (W(N),w(D),w(N), w(N),w(N),w(D))
(1,2,1,1,1,2).
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More generally, we will denote a sequence of length 1" of
outputs from a set O of size m by

O = (01,0, ...,07),

with O, € O fort =1,...,T.

Using the bijection w: @ — {1,...,m}, the sequence O
is completely determined by the sequence of indices

w(0) = (w(O1),w(Os), ..., w(O7)),

where w(0Oy) is some index from the set {1,...,m}, for
t=1,....T

This time, we adopt the notational convention to de-
note the index w(O;) by w;.
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Going back to our example
O = (017 027 037 047 057 06) — (N7 D7 N7 N7 N7 D)7
we have

W(O) = (W(O1), w(O2),w(03),w(O4), w(Os5),w(Og))
(1,2,1,1,1,2),

so the sequence of indices
(w1, wa, w3, Wy, ws, ws) = (W(O1),w(O2),w(03),w(Oy),
w(0s3),w(0g)) is given by

w(O0) = (w1, w2, w3, Wy, ws, wg) = (1,2,1,1,1,2).

HMM'’s are among the most effective tools to solve the
following types of problems:
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(1) DNA and protein sequence alignment in the
face of mutations and other kinds of evolutionary change.

(2) Speech understanding systems, also called
Automatic speech recognition. When we talk,
our mouths produce sequences of sounds from the sen-
tences that we want to say. This process is complex.

Multiple words may map to the same sound, words
are pronounced differently as a function of the word
before and after them, we all form sounds slightly
differently, and so on.

All a listener can hear (perhaps a computer system)
is the sequence of sounds, and the listener would like
to reconstruct the mapping (backward) in order to
determine what words we were attempting to say.

For example, when you “talk to your TV” to pick a
program, say game of thrones, you don’t want to get
Jessica Jones.



4.1. DEFINITION OF A HIDDEN MARKOV MODEL (HMM) 141

(3) Optical character recognition (OCR). When
we write, our hands map from an idealized symbol to
some set of marks on a page (or screen).

The marks are observable, but the process that gen-
erates them isn't.

A system performing OCR, such as a system used by
the post office to read addresses, must discover which
word is most likely to correspond to the mark it reads.
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The reader should review Example 4.1 illustrating the
notion of HMM.

Let us consider another example taken from Stamp [?].

Example 4.2. Suppose we want to determine the av-
erage annual temperature at a particular location over a
series of years in a distant past where thermometers did
not exist.

Since we can’'t go back in time, we look for indirect evi-
dence of the temperature, say in terms of the size of tree
growth rings.

For simplicity, assume that we consider the two tempera-
tures Cold and Hot, and three different sizes of tree rings:
small, medium and large, which we denote by S, M, L.
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In this example, the set of states is ( = {Cold, Hot}, and
the set of outputs is @ = {S, M, L}.

We have the bijection o: {Cold, Hot} — {1,2} given
by o(Cold) = 1 and o(Hot) = 2, and the bijection
w: {5, M, L} — {1,2,3} given by w(S) =1, w(M) = 2,
and w(L) = 3.

The HMM shown in Figure 4.2 is a model of the situation.

Figure 4.2: Example of an HMM modeling the temperature in terms of tree growth rings.
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Suppose we observe the sequence of tree growth rings

(S, M, S, L).

What is the most likely sequence of temperatures over a
four-year period which yields the observations

(S, M, S, L)?
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Going back to Example 4.1, which corresponds to the
HMM graph shown in Figure 4.3, we need to figure out
the probability that a sequence of states S = (q1, qo, - - -, qr)
produces the output sequence O = (O1, 0o, ..., O7).

®

Figure 4.3: Example of an HMM modeling the “drinking behavior” of a professor at the
University of Pennsylvania.
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Then the probability that we want is just the product
of the probability that we begin with state g, times the
product of the probabilities of each of the transitions,
times the product of the emission probabilities.

With our notational conventions, o(q;) = ¢; and w(O;) =
Wy, SO We have

Pr(S, 0) = m(i1) Bliv, w) | [ Air—1, i) Bli, wr).

=2

In our example, w(Q) = (wy,ws, w3, wy) = (1,1,1,2),
which corresponds to NNND.

The brute-force method is to compute these probabilities
for all 2¢ = 16 sequences of states of length 4 (in general,
there are n! sequences of length T').
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For example, for the sequence S = (Cold, Cold, Cold, Hot),
associated with the sequence of indices
O'(S) = (il, ’ig, ’ig, ’L4> — (1, 1, 1, 2), we find that

Pr(S,NNND) = 7(1)B(1, 1)A(1, 1)B(1,1)A(1,1)B(1, 1)
A(1,2)B(2,2)
=045 x 0.8 x0.7x0.8x0.7x0.8
x 0.3 x 0.7 = 0.0237.

A much more efficient way to proceed is to use a method
based on dynamic programmaing.

Recall the bijection o: {Cold, Hot} — {1, 2}, so that we
will refer to the state Cold as 1, and to the state Hot as
2.
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For t = 1,2,3,4, for every state ¢ = 1,2, we compute
score(i, t) to be the highest probability that a sequence
of length t ending in state © produces the output se-
quence (O, ...,0), and for t > 2, we let pred(i,t) be
the state that precedes 1 in a best sequence of length t
ending in 1.
Initially, we set

score(j,1) = w(j)Blj.wr), j = 1.2
and since wy; = 1 we get score(1,1) = 0.45 x 0.8 = 0.36
and score(2,1) = 0.55 x 0.3 = 0.165.

Next we compute score(1,2) and score(2,2) as follows.

For y = 1,2, for 2+ = 1, 2, compute temporary scores
tscore(i, j) = score(i, 1)A(1, 7)B(j, ws);
then pick the best of the temporary scores,

score(j,2) = maxtscore(t, j).



4.1. DEFINITION OF A HIDDEN MARKOV MODEL (HMM) 149

Since wy = 1, we get tscore(1,1) = 0.36 x 0.7 x 0.8 =
0.2016, tscore(2,1) = 0.165 x 0.25 x 0.8 = 0.0330, and
tscore(1,2) = 0.36 x 0.3 x 0.3 = 0.0324, tscore(2,2) =
0.165 x 0.75 x 0.3 = 0.0371.

Then

score(1,2) = max{tscore(1,1),tscore(2,1)}
— max{0.2016,0.0330} = 0.2016,

and

score(2,2) = max{tscore(1,2),tscore(2,2)}
= max{0.0324,0.0371} = 0.0371.

Since the state that leads to the optimal score score(1, 2)
is 1, we let pred(1,2) = 1, and since the state that leads
to the optimal score score(2, 2) is 2, we let pred(2,2) = 2.
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We compute score(1,3) and score(2, 3) in a similar way.

For y = 1,2, for : = 1,2, compute
tscore(i, j) = score(i,2)A(1, 7)B(j, ws);
then pick the best of the temporary scores,
score(j,3) = max tscore(i, j).

Since wg = 1, we get
score(1,3) = max{0.1129,0.0074} = 0.1129,
and

score(2,3) = max{0.0181,0.0083} = 0.0181.

We also get pred(1,3) =1 and pred(2,3) = 1.

Finally, we compute score(1,4) and score(2,4) in a sim-
ilar way:.
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For y = 1,2, for : = 1,2, compute
tscore(i, j) = score(i,3)A(i, j)B(J,wy);
then pick the best of the temporary scores,
score(j,4) = max tscore(i, j).

Since wy = 2, we get

score(1,4) = max{0.0158,0.0009} = 0.0158,
and

score(2,4) = max{0.0237,0.0095} = 0.0237,
and pred(1,4) = 1 and pred(2,4) = 1.
Since max{score(1,4), score(2,4)} = 0.0237, the state
with the maximum score is Hot, and by following the

predecessor list (also called backpointer list), we find the

most likely state sequence to produce the sequence NNND
to be (Cold, Cold, Cold, Hot).
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The stages of the computations of score(j,t) for ¢ =
1,2 and t = 1,2,3,4 can be recorded in the following
diagram called a lattice or a trellis (which means lattice
in French!):

Cold 0.36=22U6 ) 2016L122 () 1129 L0158, () 1158
0.0324 0.0181 0.0237
0.033 0.0074 0.0009
Hot 0.1650 5577 0.0371 5 0-0181 555z 0.0237

Double arrows represent the predecessor edges.

For example, the predecessor pred(2, 3) of the third node
on the bottom row labeled with the score 0.0181 (which
corresponds to Hot), is the second node on the first row la-
beled with the score 0.2016 (which corresponds to Cold).

The two incoming arrows to the third node on the bottom

row are labeled with the temporary scores 0.0181 and
0.0083.
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The node with the highest score at time ¢ = 4 is Hot,
with score 0.0237 (showed in bold), and by following the
double arrows backward from this node, we obtain the

most likely state sequence (Cold, Cold, Cold, Hot).

The method we just described is known as the Viterb:
algorithm.



154 CHAPTER 4. HIDDEN MARKOV MODELS (HMNMS)

Definition 4.1. A hidden Markov model, for short
HMDM , is a quintuple M = (Q, O, 7, A, B) where

e () is a finite set of states with n elements, and there
is a bijection o: @ — {1,...,n}.

e O is a finite output alphabet (also called set of pos-
sible observations) with m observations, and there is
a bijection w: @ — {1,...,m}.

e A = (A(i,7)) is an n X n matrix called the state
transition probability matriz, with

Ali,j) >0, 1<ij<n, and Y A(i,j) =1,
j=1

1=1,...,n.

e B = (B(i, 7)) is an n x m matrix called the state ob-
servation probability matrix (also called confusion
matriz), with
B(i,j) >0, 1<ij<n, and » B(i,j)=1,

j=1

1=1,...,n.
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A matrix satisfying the above conditions is said to be
row stochastic. Both A and B are row-stochastic.

We also need to state the conditions that make M a
Markov model. To do this rigorously requires the notion
of random variable and is a bit tricky (see the remark in
the notes), so we will cheat as follows:

(a) Given any sequence of states (qi,...,¢q—2,p,q), the
conditional probability that ¢ is the tth state given
that the previous states were qq, ..., q—2,p is equal
to the conditional probability that ¢ is the tth state
given that the previous state at time ¢t — 1 is p:

Pr(q | qi1y- .- Qt—Qap) — Pr(q | p)
This is the Markov property.
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(b) Given any sequence of states (q1,...,q;,--.,q), and
given any sequence of outputs (Oq,...,0;,...,0),
the conditional probability that the output O; is emit-
ted depends only on the state g;, and not any other
states or any other observations:

Pr(Oi |Q17'"7qi7'"7Qt7017"'70i7"'70t)
= Pr(O; | qi)-

This is the output independence condition.

Examples of HMMs are shown in Figure 4.1, Figure 4.2,
and Figure 4.4 shown below.
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Note that an ouput is emitted when visiting a state, not
when making a transition, as in the case of a gsm.

So the analogy with the gsm model is only partial; it is
meant as a motivation for HMMs.

If we ignore the output components @ and B, then we
have what 1s called a Markov chain.
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There are three types of problems that can be solved using
HMMs:

(1) The decoding problem: Given an HMM M =
(Q,0,m, A, B), for any observed output sequence O =
(01,09, ...,07) of length T, find a most likely se-
quence of states S = (q1,qo, - .., qr) that produces
the output sequence O.

More precisely, with our notational convention that

o(qt) = it and w(O;) = wy, this means finding a se-
quence S such that the probability

T
Pr(S,0) = m(i1)B(i1, wr HA b1, 9¢) Bz, wy)
$=2

1s maximoal.

This problem is solved effectively by the Viterb: al-
gorithm.
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(2) The evaluation problem, also called
the likelyhood problem:
Given a finite collection {My,..., M} of HMM’s
with the same output alphabet O, for any output se-

quence O = (01,0, ..., Op) of length T, find which
model My, s most likely to have generated O.

More precisely, given any model M}, we compute the
probability tprob, that M, could have produced O
along any path.

Then we pick an HMM M, for which tprob, is max-
imal. We will return to this point after having de-
scribed the Viterbi algoritm.

A variation of the Viterbi algorithm called the for-
ward algorithm effectively solves the evaluation prob-
lem.
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(3) The training problem, also called the learning
problem: Given a set {Oy,...,O,} of output se-
quences on the same output alpabet @, usually called
a set of tratning data, given @), find the “best” m, A,
and B for an HMM M that produces all the se-
quences in the training set, in the sense that the

HMM M = (Q, 0,7, A, B) is the most likely to have
produced the sequences in the training set.

The technique used here is called expectation maxi-
mization, or KM . It is an iterative method that starts
with an initial triple 7w, A, B, and tries to impove it.

There is such an algorithm known as the Baum-Welch
or forward-backward algorithm, but it is beyond the
scope of this introduction.

Let us now describe the Viterbi algorithm in more details.
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4.2 The Viterbi Algorithm and the Forward Algorithm

Given an HMM M = (Q, O, w, A, B), for any observed
output sequence O = (01, 0s, ..., Op) of length T, we
want to find a most likely sequence of states & =
(q1,q2, - - -, qr) that produces the output sequence O.

Using the bijections o: @ — {1,...,n} and w: O —
{1,...,m}, we can work with sequences of indices, and
recall that we denote the index o(q) associated with the
tth state ¢; in the sequence S by 4;, and the index w(Oy)
associated with the tth output O; in the sequence O by
Wi,

Then we need to find a sequence S such that the proba-
bility

T
Pr (8 0) =T 7,1 zl,wl HA Zt 1,’Lt Zt,wt)
=2

15 maximal.
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T

In general, there are n* sequences of length 7.

This problem can be solved efficiently by a method based
on dynamic programmaing.

For any t, 1 <t < T, for any state ¢ € Q, if o(q) =
7, then we compute score(j,t), which is the largest
probability that a sequence (qu,...,q-1,q) of length t
ending with q has produced the output sequence

<017 SR Ot—17 Ot)

The point is that if we know score(k,t — 1) for k =
1,...,n (witht > 2), then we can find score(yj,t) for j =
1,...,n, because if we write k = o(q;_1) and 7 = o(q)
(recall that wy = w(Oy)), then the probability associated
with the path (qi,...,¢-1,q) is

tscore(k,j) = score(k,t — 1)A(k, 7)B(J, w:).

See the illustration below:
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state indices 1 e k i
0'] 0'] . g
states i ekt AR g
| | Bljar)
outputs O, . O;_4 Oy
(A)L wl w
output indices W1 . Wi_1 Wy

S0 to maximaize this probability, we just have to find the
maximum of the probabilities tscore(k,j) over all k,
that is, we must have

score(j,t) = max tscore(k,j).

See the illustration below:

o~ '(1)

score(1,7)

_ tscore(k,) 1
o 1(/€) (k.J) g=0 1(])

score(n,j)
o~ (n)
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To get started, we set score(j,1) = m(j)B(j,w) for j =
1,...,n.

The algorithm goes through a forward phase for t =
1,...., T, during which it computes the probabilities
score(j,t) for j =1,...,n.

When t = T, we pick an index j such that score(j,T) is
maximal.

The machine learning community is fond of the notation

j = argmax score(k,T)
k
to express the above fact. Typically, the smallest index
g corresponding to the largest value of score(k,T) is re-
turned.

This gives us the last state gqr = o~'(j) in an optimal
sequence that yields the output sequence O.
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The algorithm then goes through a path retrieval phase.
To to this, when we compute

score(j,t) = max tscore(k, 7),

we also record the index k = o(q;_1) of the state ¢;_1 in
the best sequence (q1, . .., ¢_1, q) for which tscore(k, j)
is mazimal (with j = o(q)), as pred(j,t) = k.

The index k is often called the backpointer of 7 at time
t.

This state may not be unique, we just pick one of them.
Typically, the smallest index k corresponding to the largest
value of tscore(k, j) is returned.
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Again, this can be expressed by

pred(j,t) = arg max tscore(k, j).
k

The predecessors pred(j,t) are only defined fort = 2, .. .,
T, but we can let pred(j,1) = 0.

Observe that the path retrieval phase of the Viterbi algo-
rithm is very similar to the phase of Dijkstra’s algorithm
for finding a shortest path that follows the prev array.

The forward phase of the Viterbi algorithm is quite dif-
ferent from the Dijkstra’s algorithm, and the Viterbi al-
gorithm is actually simpler.
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The Viterbi algorithm, invented by Andrew Viterbi in
1967, is shown below.

The input to the algorithm is M = (Q, O, w, A, B) and
the sequence of indices w(O) = (wy, ..., wr) associated
with the observed sequence O = (O1,0s,...,0Or) of
length T, with w; = w(Oy) fort =1,...,T.

The output is a sequence of states (qi,...,qr). This se-
quence is determined by the sequence of indices (I, . .., I7);
namely, ¢ = o~ ().
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The Viterbi Algorithm
begin
for =1 ton do
score(j, 1) = () B(j, wi)
endfor:;
(% forward phase to find the best (highest) scores )
for t=2to T do
for =1 ton do
for k=1to n do
tscore(k) = score(k,t — 1)A(k, 7)B(J, w)
endfor:;
score(j,t) = maxy tscore(k);
pred(j,t) = arg max, tscore(k)
endfor
endfor:;
(% second phase to retrieve the optimal path )
I7 = argmax; score(j,T);
qr = o (Ir);
for t =T to 2 by —1 do
I 1 = pred(I;,t);
G—1 =0 (I;-1)
endfor
end
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If we run the Viterbi algorithm on the output sequence
(S, M, S, L) of Example 4.2, we find that the sequence
(Cold, Cold, Cold, Hot) has the highest probability, 0.00282,

among all sequences of length four.

One may have noticed that the numbers involved, being
products of probabilities, become quite small.

Indeed, underflow may arise in dynamic programming.
Fortunately, there is a simple way to avoid underflow by
taking logarithms.

It immediately verified that the time complexity of the
Viterbi algorithm is O(n*T).

Let us now to turn to the second problem, the evaluation
problem (or likelyhood problem).
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This time, given a finite collection { My, . .., M1} of HMM’s
with the same output alphabet @, for any observed out-
put sequence O = (O1,04,...,0r) of length T, find
which model My, is most likely to have generated O.

More precisely, given any model M}, we compute the
probability tprob; that M. could have produced O along
any path.

Then we pick an HMM M, for which ¢prob, is maximal.

It is easy to adapt the Viterbi algorithm to compute
tprob;.. This algorithm is called the forward algorithm.

Since we are not looking for an explicity path, there s
no need for the second phase, and during the forward
phase, going from ¢t — 1 to ¢, rather than finding the
maximum of the scores tscore(k) for k = 1,...,n, we
just set score(y,t) to the sum over k of the temporary
scores tscore(k).

At the end, tprob;. is the sum over j of the probabilities
score(g,T).
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The input to the algorithm is M = (Q, 0,7, A, B) and
the sequence of indices w(O) = (w1, ...,wr) associated
with the observed sequence O = (01,0, ...,07) of
length T', with w; = w(Oy) fort =1,...,T.

The output is the probability tprob.
The Foward Algorithm

begin
for =1 ton do
score(j, 1) = (j) B(j, @)
endfor:;
fort=2to T do
for =1 ton do
for k=1ton do
tscore(k) = score(k,t — 1)A(k, j)B(J, w)
endfor:;
score(j,t) = >, tscore(k)
endfor
endfor:;
tprob =} . score(j,T)
end
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We can now run the above algorithm on My, ..., My to
compute tproby, ..., tprobr, and we pick the model M,
for which tprob, is maximum.

As for the Viterbi algorithm, the time complexity of the
forward algorithm is O(n?T).

Underflow is also a problem with the forward algorithm.

At first glance it looks like taking logarithms does not help
because there is no simple expression for log(z1+- - - +x,,)
in terms of the log x;.

Fortunately, we can use the log-sum exp trick; see the
notes.

Example 4.3. To illustrate the forward algorithm, as-
sume that our observant student also recorded the drink-
ing behavior of a professor at Harvard, and that he came
up with the HHM shown in Figure 4.4.
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®

Figure 4.4: Example of an HMM modeling the “drinking behavior” of a professor at Harvard.

However, the student can’t remember whether he ob-
served the sequence NNND at Penn or at Harvard.

So he runs the forward algorithm on both HMM'’s to find
the most likely model. Do it!



