Problem B1 (80 pts). (i) Prove that the conclusion of the pumping lemma holds for the following language L over $\{a, b\}^*$, and yet, L is not regular!

$$L = \{w \mid \exists n \geq 1, \exists x_i \in a^+, \exists y_i \in b^+, 1 \leq i \leq n, n \text{ is not prime, } w = x_1y_1 \cdots x_ny_n\}.$$

(ii) Consider the following version of the pumping lemma. For any regular language L, there is some $m \geq 1$ so that for every $y \in \Sigma^*$, if $|y| = m$, then there exist $u, x, v \in \Sigma^*$ so that

1. $y = uxv$;
2. $x \neq \epsilon$;
3. For all $z \in \Sigma^*$,

$$yz \in L \iff ux^ivz \in L$$

for all $i \geq 0$.

Prove that this pumping lemma holds.

(iii) Prove that the converse of the pumping lemma in (ii) also holds, i.e., if a language L satisfies the pumping lemma in (ii), then it is regular.

(iv) Consider yet another version of the pumping lemma. For any regular language L, there is some $m \geq 1$ so that for every $y \in \Sigma^*$, if $|y| \geq m$, then there exist $u, x, v \in \Sigma^*$ so that

1. $y = uxv$;
2. $x \neq \epsilon$;
3. For all $\alpha, \beta \in \Sigma^*$,

$$\alpha u \beta \in L \iff \alpha u x^i \beta \in L$$

for all $i \geq 0$.
Prove that this pumping lemma holds.

(v) Prove that the converse of the pumping lemma in (iv) also holds, i.e., if a language L satisfies the pumping lemma in (iv), then it is regular.

Problem B2 (60 pts). Let $D = (Q, \Sigma, \delta, q_0, F)$ be a deterministic finite automaton. Define the relations \approx and \sim on Σ^* as follows:

\[x \approx y \text{ if and only if, for all } p \in Q, \quad \delta^*(p, x) \in F \iff \delta^*(p, y) \in F, \]

and

\[x \sim y \text{ if and only if, for all } p \in Q, \quad \delta^*(p, x) = \delta^*(p, y). \]

(1) Show that \approx is a left-invariant equivalence relation and that \sim is an equivalence relation that is both left and right invariant. (A relation R on Σ^* is left invariant iff uRv implies that $wuRwv$ for all $w \in \Sigma^*$, and R is left and right invariant iff uRv implies that $xuyRxvy$ for all $x, y \in \Sigma^*$.)

(2) Let n be the number of states in Q (the set of states of D). Show that \approx has at most 2^n equivalence classes and that \sim has at most n^n equivalence classes.

Hint. In the case of \approx, consider the function $f: \Sigma^* \rightarrow 2^Q$ given by

\[f(u) = \{ p \in Q \mid \delta^*(p, u) \in F \}, \quad u \in \Sigma^*, \]

and show that $x \approx y$ iff $f(x) = f(y)$. In the case of \sim, let Q^Q be the set of all functions from Q to Q and consider the function $g: \Sigma^* \rightarrow Q^Q$ defined such that $g(u)$ is the function given by

\[g(u)(p) = \delta^*(p, u), \quad u \in \Sigma^*, \quad p \in Q, \]

and show that $x \sim y$ iff $g(x) = g(y)$.

(3) Given any language $L \subseteq \Sigma^*$, define the relations λ_L and μ_L on Σ^* as follows:

\[u \lambda_L v \text{ iff, for all } z \in \Sigma^*, \quad zu \in L \iff zv \in L, \]

and

\[u \mu_L v \text{ iff, for all } x, y \in \Sigma^*, \quad xuy \in L \iff xyv \in L. \]

Prove that λ_L is left-invariant, and that μ_L is left and right-invariant. Prove that if L is regular, then both λ_L and μ_L have a finite number of equivalence classes.

Hint: Show that the number of classes of λ_L is at most the number of classes of \approx, and that the number of classes of μ_L is at most the number of classes of \sim.

Problem B3 (100 pts). Which of the following languages are regular? Justify each answer.
(1) \(L_1 = \{ wcw \mid w \in \{a,b\}^* \}. \) (here \(\Sigma = \{a,b,c\} \)).

(2) \(L_2 = \{ xy \mid x, y \in \{a,b\}^* \text{ and } |x| = |y| \}. \) (here \(\Sigma = \{a,b\} \)).

(3) \(L_3 = \{ a^n \mid n \text{ is a prime number} \}. \) (here \(\Sigma = \{a\} \)).

(4) \(L_4 = \{ a^m b^n \mid \gcd(m,n) = 23 \}. \) (here \(\Sigma = \{a,b\} \)).

(5) Consider the language

\[
L_5 = \{ a^{4n+3} \mid 4n + 3 \text{ is prime} \}.
\]

Assuming that \(L_5 \) is infinite, prove that \(L_5 \) is not regular.

(6) Let \(F_n = 2^{2^n} + 1 \), for any integer \(n \geq 0 \), and let

\[
L_6 = \{ a^{F_n} \mid n \geq 0 \}.
\]

Here \(\Sigma = \{a\} \).

Extra Credit (from 10 up to 100 pts). Find explicitly what \(F_0, F_1, F_2, F_3 \) are, and check that they are prime. What about \(F_4 \) and \(F_5 \)?

Is the language

\[
L_7 = \{ a^{F_n} \mid n \geq 0, F_n \text{ is prime} \}
\]

regular?

Extra Credit (20 pts). Prove that there are infinitely many primes of the form \(4n + 3 \).

The list of such primes begins with

\[3, 7, 11, 19, 23, 31, 43, \cdots\]

Say we already have \(n + 1 \) of these primes, denoted by

\[3, p_1, p_2, \cdots, p_n,\]

where \(p_i > 3 \). Consider the number

\[m = 4p_1 p_2 \cdots p_n + 3.\]

If \(m = q_1 \cdots q_k \) is a prime factorization of \(m \), prove that \(q_j > 3 \) for \(j = 1, \ldots k \) and that no \(q_j \) is equal to any of the \(p_i \)'s. Prove that one of the \(q_j \)'s must be of the form \(4n + 3 \), which shows that there is a prime of the form \(4n + 3 \) greater than any of the previous primes of the same form.
Problem B4 (70 pts). Let L be any regular language over some alphabet Σ. Define the languages

\[
L^\infty = \bigcup_{k \geq 1} \{w^k \mid w \in L\},
\]

\[
L^{1/\infty} = \{w \mid w^k \in L, \text{ for all } k \geq 1\}, \quad \text{and}
\]

\[
\sqrt{L} = \{w \mid w^k \in L, \text{ for some } k \geq 1\}.
\]

Also, for any natural number $k \geq 1$, let

\[
L^{(k)} = \{w^k \mid w \in L\},
\]

and

\[
L^{(1/k)} = \{w \mid w^k \in L\}.
\]

(a) Prove that $L^{(1/3)}$ is regular. What about $L^{(3)}$?

(b) Let $k \geq 1$ be any natural number. Prove that there are only finitely many languages of the form $L^{(1/k)} = \{w \mid w^k \in L\}$ and that they are all regular. (In fact, if L is accepted by a DFA with n states, there are at most 2^{n^a} languages of the form $L^{(1/k)}$).

(c) Is $L^{1/\infty}$ regular or not? Is \sqrt{L} regular or not? What about L^∞?

TOTAL: 310 + 40 points.