Announcements

• **Homework 3:** Compiling LLVMlite

 • **Goal:**
 – Familiarize yourself with (a subset of) the LLVM IR
 – Implement a translation down to (inefficient) X86lite

• **Due:** Weds., March 4th

• **MIDTERM EXAM**
 – Thursday, Feb. 27th in class (this room)
 – Coverage: interpreters / program transformers / x86 / calling conventions / IRs / LLVM / Lexing / Parsing
 – See examples on the web pages

it is nearly too late to START EARLY!!
Last Time: Lexing

Source Code
(Character stream)
```c
if (b == 0) { a = 1; }
```

Token stream:
```c
if ( b == 0 ) { a = 0 ; }
```

Abstract Syntax Tree:
```
If
  Eq
    b
  Assn
    0
    a
  None
    1
```

Intermediate code:
```
11:
  %cnd = icmp eq i64 %b, 0
  br i1 %cnd, label %l2, label %l3
12:
  store i64* %a, 1
  br label %l3
13:
```

Assembly Code
```
11:
  cmpq %eax, $0
  jeq 12
  jmp 13
12:
  ...
```
lexlex.mll, olex.mll, piglatin.mll

DEMO: OCAMLLEX
Creating an abstract representation of program syntax.

PARSING
Today: Parsing

Source Code (Character stream)
if (b == 0) { a = 1; }

Token stream:
if (b == 0) { a = 0 ; }

Abstract Syntax Tree:
If
 Eq
 b
 Assn
 0
 Assn
 a
 None
 1

Intermediate code:
11: %cnd = icmp eq i64 %b, 0
 br i1 %cnd, label %12, label %13
12: store i64* %a, 1
 br label %13
13: ...

Assembly Code
11:
 cmpq %eax, $0
 jeq 12
 jmp 13
12:
 ...
{ if (b == 0) a = b;
 while (a != 1) {
 print_int(a);
 a = a - 1;
 }
}

Source input

Abstract Syntax tree

Parse: Finding Syntactic Structure
Syntactic Analysis (Parsing): Overview

• Input: stream of tokens (generated by lexer)
• Output: abstract syntax tree

• Strategy:
 – Parse the token stream to traverse the “concrete” syntax
 – During traversal, build a tree representing the “abstract” syntax

• Why abstract? Consider these three different concrete inputs:
 \[
 a + b \\
 (a + ((b))) \\
 ((a) + (b))
 \]

• Note: parsing doesn’t check many things:
 – Variable scoping, type agreement, initialization, …
Specifying Language Syntax

• First question: how to describe language syntax precisely and conveniently?

• Last time: we described tokens using regular expressions
 – Easy to implement, efficient DFA representation
 – Why not use regular expressions on tokens to specify programming language syntax?

• Limits of regular expressions:
 – DFA’s have only finite # of states
 – So… DFA’s can’t “count”
 – For example, consider the language of all strings that contain balanced parentheses – easier than most programming languages, but not regular.

• So: we need more expressive power than DFA’s
CONTEXT FREE GRAMMARS
Here is a specification of the language of balanced parens:

\[
S \rightarrow (S)S \\
S \rightarrow \varepsilon
\]

The definition is recursive – S mentions itself.

Idea: “derive” a string in the language by starting with S and rewriting according to the rules:

Example: \(S \rightarrow (S)S \rightarrow ((S)S)S \rightarrow ((\varepsilon)S)S \rightarrow ((\varepsilon)S)\varepsilon \rightarrow ((\varepsilon)\varepsilon)\varepsilon = (()) \)

You can replace the “nonterminal” S by one of its definitions anywhere.

A context-free grammar accepts a string iff there is a derivation from the start symbol.

Note: Once again we have to take care to distinguish meta-language elements (e.g. “S” and “\(\rightarrow \)”) from object-language elements (e.g. “(“).

* And, since we’re writing this description in English, we are careful distinguish the meta-meta-language (e.g. words) from the meta-language and object-language (e.g. symbols) by using quotes.
A Context-free Grammar (CFG) consists of
- A set of terminals (e.g., a lexical token or ε)
- A set of nonterminals (e.g., S and other syntactic variables)
- A designated nonterminal called the start symbol
- A set of productions: $\text{LHS} \rightarrow \text{RHS}$
 - LHS is a nonterminal
 - RHS is a string of terminals and nonterminals

Example: The balanced parentheses language:

- $S \rightarrow (S)S$
- $S \rightarrow \varepsilon$

How many terminals? How many nonterminals? Productions?
Another Example: Sum Grammar

A grammar that accepts parenthesized sums of numbers:

\[
S \rightarrow E + S \mid E \\
E \rightarrow \text{number} \mid (S)
\]

e.g.: \((1 + 2 + (3 + 4)) + 5\)

Note the vertical bar ‘|’ is shorthand for multiple productions:

- 4 productions: \(S \rightarrow E + S\), \(S \rightarrow E\), \(E \rightarrow \text{number}\), \(E \rightarrow (S)\)
- 2 nonterminals: \(S, E\)
- 4 terminals: \((,), +, \text{number}\)
- Start symbol: \(S\)
Derivations in CFGs

• Example: derive \((1 + 2 + (3 + 4)) + 5\)

\[
S \rightarrow E + S
\]

\[
\rightarrow (S) + S
\]

\[
\rightarrow (E + S) + S
\]

\[
\rightarrow (1 + S) + S
\]

\[
\rightarrow (1 + E + S) + S
\]

\[
\rightarrow (1 + 2 + S) + S
\]

\[
\rightarrow (1 + 2 + E) + S
\]

\[
\rightarrow (1 + 2 + (S)) + S
\]

\[
\rightarrow (1 + 2 + (E + S)) + S
\]

\[
\rightarrow (1 + 2 + (3 + S)) + S
\]

\[
\rightarrow (1 + 2 + (3 + E)) + S
\]

\[
\rightarrow (1 + 2 + (3 + 4)) + S
\]

\[
\rightarrow (1 + 2 + (3 + 4)) + E
\]

\[
\rightarrow (1 + 2 + (3 + 4)) + 5
\]

For arbitrary strings \(\alpha, \beta, \gamma\) and production rule \(A \rightarrow \beta\)
a single step of the derivation is:

\[
\alpha A\gamma \rightarrow \alpha \beta \gamma
\]

(substitute \(\beta\) for an occurrence of \(A\))

In general, there are many possible derivations for a given string

Note: Underline indicates symbol being expanded.
• Tree representation of the derivation
• Leaves of the tree are terminals
 – In-order traversal yields the input sequence of tokens
• Internal nodes: nonterminals
• No information about the order of the derivation steps

(1 + 2 + (3 + 4)) + 5
From Parse Trees to Abstract Syntax

- **Parse tree:**

 "concrete syntax"

 Tree diagram:

 - S
 - E + S
 - (S)
 - E
 - E + S
 - 1
 - 2
 - (S)
 - E + S
 - 3
 - 4

- **Abstract syntax tree (AST):**

 Tree diagram:

 - +
 - + 5
 - 1
 - 2
 - +
 - 3 4

- **Hides, or abstracts, unneeded information.**
Derivation Orders

• Productions of the grammar can be applied in any order.
• There are two standard orders:
 – *Leftmost derivation*: Find the left-most nonterminal and apply a production to it.
 – *Rightmost derivation*: Find the right-most nonterminal and apply a production there.

• Note that both strategies (and any other) yield the same parse tree!
 – Parse tree doesn’t contain the information about what order the productions were applied.
Example: Left- and rightmost derivations

- **Leftmost derivation:**

 \[
 S \rightarrow E + S \\
 \rightarrow (S) + S \\
 \rightarrow (E + S) + S \\
 \rightarrow (1 + S) + S \\
 \rightarrow (1 + E + S) + S \\
 \rightarrow (1 + 2 + S) + S \\
 \rightarrow (1 + 2 + E) + S \\
 \rightarrow (1 + 2 + (S)) + S \\
 \rightarrow (1 + 2 + (E + S)) + S \\
 \rightarrow (1 + 2 + (3 + S)) + S \\
 \rightarrow (1 + 2 + (3 + E)) + S \\
 \rightarrow (1 + 2 + (3 + 4)) + S \\
 \rightarrow (1 + 2 + (3 + 4)) + E \\
 \rightarrow (1 + 2 + (3 + 4)) + 5
 \]

- **Rightmost derivation:**

 \[
 S \rightarrow E + S \\
 \rightarrow (S) + E \\
 \rightarrow (E + S) + 5 \\
 \rightarrow (E + S) + S \\
 \rightarrow (E + E + S) + 5 \\
 \rightarrow (E + E + E) + S \\
 \rightarrow (E + E + (E + S)) + 5 \\
 \rightarrow (E + E + (E + E)) + 5 \\
 \rightarrow (E + E + (E + 4)) + 5 \\
 \rightarrow (E + E + (3 + 4)) + 5 \\
 \rightarrow (E + 2 + (3 + 4)) + 5 \\
 \rightarrow (1 + 2 + (3 + 4)) + 5
 \]

CIS 341: Compilers
Loops and Termination

• Some care is needed when defining CFGs
• Consider:

\[
\begin{align*}
S & \rightarrow E \\
E & \rightarrow S \\
\end{align*}
\]

– This grammar has nonterminal definitions that are “nonproductive”. (i.e. they don’t mention any terminal symbols)
– There is no finite derivation starting from S, so the language is empty.

• Consider:

\[
S \rightarrow (S)
\]

– This grammar is productive, but again there is no finite derivation starting from S, so the language is empty.

• Easily generalize these examples to a “chain” of many nonterminals, which can be harder to find in a large grammar.

• Upshot: be aware of “vacuously empty” CFG grammars.
 – Every nonterminal should eventually rewrite to an alternative that contains only terminal symbols.
Associativity, ambiguity, and precedence.
Consider the input: \(1 + 2 + 3 \)

Leftmost derivation:

\[
\begin{align*}
S & \rightarrow E + S \\
& \rightarrow 1 + S \\
& \rightarrow 1 + E + S \\
& \rightarrow 1 + 2 + S \\
& \rightarrow 1 + 2 + E \\
& \rightarrow 1 + 2 + 3
\end{align*}
\]

Rightmost derivation:

\[
\begin{align*}
S & \rightarrow E + S \\
& \rightarrow E + E + S \\
& \rightarrow E + E + E \\
& \rightarrow E + E + 3 \\
& \rightarrow E + 2 + 3 \\
& \rightarrow 1 + 2 + 3
\end{align*}
\]

Parse Tree

```
  +
 /|
/ |
\ E + S
  |   |
  1   E + S
    |   |
    2   E + S
      |   |
      3
```

AST

```
+ 
/|
/ |
\ E + S
  |   |
  1   E + S
    |   |
    2   E + S
      |   |
      3
```
Associativity

- This grammar makes ‘+’ right associative...
- The abstract syntax tree is the same for both 1 + 2 + 3 and 1 + (2 + 3)
- Note that the grammar is right recursive...

\[
S \rightarrow E + S \mid E \\
E \rightarrow \text{number} \mid (S)
\]

- How would you make ‘+’ left associative?
- What are the trees for “1 + 2 + 3”?
Ambiguity

• Consider this grammar:

\[S \rightarrow S + S \mid (S) \mid \text{number} \]

• Claim: it accepts the *same* set of strings as the previous one.
• What’s the difference?
• Consider these *two* leftmost derivations:
 - \[S \rightarrow S + S \rightarrow 1 + S \rightarrow 1 + S + S \rightarrow 1 + 2 + S \rightarrow 1 + 2 + 3 \]
 - \[S \rightarrow S + S \rightarrow S + S + S \rightarrow 1 + S + S \rightarrow 1 + 2 + S \rightarrow 1 + 2 + 3 \]

• One derivation gives left associativity, the other gives right associativity to ‘+’
 - Which is which?
Why do we care about ambiguity?

• The ‘+’ operation is associative, so it doesn’t matter which tree we pick. Mathematically, \(x + (y + z) = (x + y) + z \)
 – But, some operations aren’t associative. Examples?
 – Some operations are only left (or right) associative. Examples?

• Moreover, if there are multiple operations, ambiguity in the grammar leads to ambiguity in their precedence

• Consider:

\[
S \rightarrow S + S \mid S \ast S \mid (S) \mid \text{number}
\]

• Input: 1 + 2 * 3
 – One parse = (1 + 2) * 3 = 9
 – The other = 1 + (2 * 3) = 7

\[
\text{vs.}
\]

\[
\begin{align*}
&+ \\
&1 \quad 2 \\
&3 \\
\end{align*}
\]

\[
\begin{align*}
&+ \\
&1 \\
&2 \quad 3 \\
\end{align*}
\]
Eliminating Ambiguity

• We can often eliminate ambiguity by adding nonterminals and allowing recursion only on the left (or right).
• Higher-precedence operators go farther from the start symbol.
• Example:

\[S \rightarrow S + S \mid S \times S \mid (S) \mid \text{number} \]

• To disambiguate:
 – Decide (following math) to make ‘*’ higher precedence than ‘+’
 – Make ‘+’ left associative
 – Make ‘*’ right associative
• Note:
 – \(S_2 \) corresponds to ‘atomic’ expressions

\[
\begin{align*}
S_0 & \rightarrow S_0 + S_1 \mid S_1 \\
S_1 & \rightarrow S_2 \times S_1 \mid S_2 \\
S_2 & \rightarrow \text{number} \mid (S_0)
\end{align*}
\]
• Context-free grammars allow concise specifications of programming languages.
 – An unambiguous CFG specifies how to parse: convert a token stream to a (parse tree)
 – Ambiguity can (often) be removed by encoding precedence and associativity in the grammar.

• Even with an unambiguous CFG, there may be more than one derivation
 – Though all derivations correspond to the same abstract syntax tree.

• Still to come: finding a derivation
 – But first: menhir
DEMO: BOOLEAN LOGIC

parser.mly, lexer.mll, range.ml, ast.ml, main.ml