Recitation 12/4

Caller-save versus callee-save

— Caller Save: registers freely usable by the callee function

- If needed, caller function saves values on the stack before invoking the
callee function

- Callee doesn’t have to worry about overwriting important information
needed by the caller

— Callee Save: registers that must be restored by the callee function

- Save registers’ values on the stack in the prologue
- Restoration in the epilogue

Which are Which? Can you see a pattern?

Caller Save: Callee Save:

x1 (ra) x2 (sp)

x5 (temp or alt link register) x8 (fp)

X6 (t1) x9, x18 - x27 (save registers)
X7 (12)

x10, x11 (first two args and return values)
x12 - x17 (other 6 args)

x28 - x31 (temp registers)

Blocks of Code

- Take advantage of labels!

- When writing the j compiler, sometimes helpful to group instructions together
-> one block of code

- Then you can make a control-flow diagram

Stark o¢ Pro
= 0%

b\od‘- "(
call h\pe” o
3 helpys
oer loop pm@ - (efwn =
) QPQ ‘ plock of !
\ : ilh
ik o S0 ok candition o |
L END: [we wll Sop when
O exit | T
ext loop deU‘:

g
OO rexwsn 40 main g 3
| ==
O haish ruaning Mmain loop |
rme—
0SM

'bnc.z_ xS, loop
) oy retn

2 Cases in ASM:

Label1: Label1:
/linstr1 /finstr1
/linstr2
/linstr2 e
/linstr3
/linstr3

j Label3 //can also be replaced with a branch
//Ino instr above were jumps or branches

Label2:
Label2: /linstr4
/linstr4 /finstr5
/linstr5 Label3:

/Imore code here

Frame and Frame Pointers

- Distinction between frame pointer (register) and frame pointer (an address)
- X8 holds the current function’s frame pointer

