
Recitation 10/23
Welcome back :)

R-S latch

- Uses only 2 gates to hold a state in memory

R S Q Action

1 0 1 SET

0 1 0 RESET

1 1 1 HOLD
from SET

1 1 0 HOLD
from

RESET

Question: Which are equivalent to the R-S latch?

A) B)

C) D)

~Q Q

~QQ

Question: Which are equivalent to the R-S latch?

A) B)

C) D)

~Q Q

~QQ

RS latch: why R and why S? (not going to be tested)

- S = set
- R = reset

But if that’s the case, Q is reset when S = 1 and R = 0. Wouldn’t it make more
sense if Q is reset when S = 0 and R = 1?

R-S Latch implemented with NAND gates create an “active low” R-S latch
because Q is active (1) when S is low (0).

R-S Latch implemented with NOR gates create an “active high” R-S latch for the
opposite reason: Q is active (1) when S is high (1)

R-S latch and D-latch comparison

R-S Latch

D-Latch: notice that D and WE are
programmed to “make” S and R such
that data D is only being held in Q if
WE is 1. (what does the truth table for
D, WE, R, and S look like?)

Question: D-Latch + Gate Delay

If an AND gate has a 3ns gate delay and NOT gate has a 1ns delay, how long
does the D-latch take to stabilize (i.e. all values stop changing) if we transition
from state 1 to state 2?

State 1: D = 0 WE = 0, Q = 1

State 2: D = 0 WE = 1, Q = ?

What is Q in State 2?

Question: D-Latch + Gate Delay - Solutions

If an AND gate has a 3ns gate delay and NOT gate has a 1ns delay, how long
does the D-latch take to stabilize (i.e. all values stop changing) if we transition
from state 1 to state 2?

State 1: D = 0 WE = 0, Q = 1

State 2: D = 0 WE = 1, Q = 0

Question: D-Latch + Gate Delay - Solutions

Since D does not change, the longest
path does not include the NOT gate
that D first encounters in the lower
branch before hitting the NAND gate.

The longest path for changing values is
WE -> Q through the lower branch
passing through ~Q, with the total cost
being 3(1ns) + 3(3ns) = 12ns

The clock:

- switches between 0 and 1 at a fixed rate
- Determines (sometimes along with WE) when values are written to memory

Tip: be sure to know the difference
between frequency and period!

Period != how long a clock stays high
before dropping to low

D Latch with Clock

Making the D Flip Flop

Why is the D-Latch on the
left called “transparent low,”
and the right D-Latch is the
“transparent high?”

(note that this diagram does
not contain WE, so assume
CLK = WE)

Story time

D Flip Flop: relation between D, Q_inter, Q, and CLK

Imagine these four variables as a recitation of 3 students and one TA (CLK). The
students sit next to each other (bc they’re friends) on the same row, with D on the
left, Q on the right, and Q_inter (which I’ll now call QI for intermediate) in the
middle.

D Flip Flop: relation between D, Q_inter, Q, and CLK

D understands the material being
covered by the TA,, while Q and QI do
not.

D wants to help her friends out, but QI
and Q are easily embarrassed and do
not want the TA to know that they are
confused.

D Flip Flop: relation between D, Q_inter, Q, and CLK

Let’s say when CLK is 1, the TA is looking away from D, but is looking at Q. This
allows QI ask D questions and get some answers (which D allows since the
attention is also not on her)

And when CLK = 0, the TA is paying attention to D, so QI can no longer ask D
more questions. But! QI can now talk to Q and relay the information that they just
received from D, since the TA is not looking at them.

And this system only works if CLK’s switches are slow enough to allow time for the
asker to get all the answers to their questions.

 QI copies D Q copies QI

D Flip Flop: relation between D, Q_inter, Q, and CLK

To recap: how do QI and Q get D’s answers?

When CLK = 1, QI can copy D, but Q cannot copy QI.

When CLK = 0, QI can no longer copy D. But QI can share what they’ve recently
learned to Q, so Q will copy QI.

Note: as TA’s, this story is not meant to discourage students asking questions in
lecture or recitation!!

This is just a slightly silly story that helps me remember when values are passed
from D to Q_inter to Q in a D Flip Flop.

End Storytime

Timing Diagram with Flip flop

Timing diagram with flip flop: solution

What clock frequency is required to write 32KB of data to a
D flip-flop in 15,000 ns if the data is written sequentially,
one bit per clock cycle? (No need to read for this)

Hint: (32KB = 32,768 bits)

What clock frequency is required to write 32KB of data to a
D flip-flop in 15,000 ns if the data is written sequentially,
one bit per clock cycle?

Number of Clock Cycles Needed: Since the data is written sequentially, and each clock cycle can write
1 bit, the number of clock cycles required to write 32,768 bits is 32,768.

Total Time: The total time to write the data is 15,000 ns.

Clock Period (T): The clock period, which is the duration of one clock cycle, is given by: 15,000 ns /
32768ns = 0.457ns

Clock Frequency (f): The clock frequency is the reciprocal of the clock period: 1/0.457ns = 2.19 GHz

Registers

Why is a DFF useful?

IT STORES STUFF!

From lecture:

Let’s say I want to store a 32-bit number…

Let’s say I want to store a 32-bit number…

● I could use a DFF to represent each bit…
● I would use 32 DFFs:

This looks scary but it’s actually not

We can abstract these 32 DFFS into a “Register”, which holds a 32-bit value:

Reg = 0010 0100 0111 1000 0101 1010 1111 0000

Memories…

In this class,
memory is just a
really long array of
stuff

0 x00

1 xFA

2 xCC

3 xDA

4 xDA

5 xBA

6 xBE

7 x01

Let’s look at some basic memory
architectures from lecture

From Lecture

SRAM vs DRAM at transistor level (will not be tested)

SRAM

● Fast
● 6 transistors per bit

DRAM

● Slow
● 1 transistors per bit

BID IGEA: Not all memory is same memory

