Midterm Review

Basics of C

Arrays

e Lists of data

e Have no concept of their own size

e Easily indexed
o Ex:intarr[] ={1, 2, 3}; — arr[2] ==
o Whatis arr...?

Pointers

e \ariables that “point” to other things
e * — dereferences a pointer
e & — gets the address of some data

int main() {
int arr[] = {10, 20, 30, 40};
LNEEEED DR SR =Dt
void manipulate(int **pl, int *p2) {
| (Edenl) i
*(kpl) *= 2;

ptrl arr:

piE 2 ptrl + 2;
pptr &ptr2;
(*p2)--;
(*xpptr)-—; i
*kpptr += 5;

*(ptrl + 3) = *¥pptr * 2;

What should this print?
Ans: 10, 59, 30, 50

manipulate(&ptrl, ptr2);

for (int 1 = 0; i < 4; i++) {
printf("%sd ", arr[i]);

U
if

return 0;

Strings

e ALMOST identical to arrays, with some additional useful syntax and
one key feature: NULL TERMINATED
e \Which of these is a string?
o char str1[] = “hi”;
o char str2[] = {'h’, i’};
o char* str3 = “hi’;

Struct

e Use when you want to create your own data structure
o EX:

typedef struct node_st {
int value;
node_st* next;
node_st* prev;

} Node;

*If you want to have the same data structure (or in this case a pointer to one) as
one of your fields, you HAVE to give it a temporary name up top (ex: node_st)

C Memory

e In this class, we think of memory as giant arrays that we can store variables
and programs in
e The Stack
o Where all your functions and local variables exist
o Once a function is returned, it gets “popped” off the stack
e The Heap
o “Dynamic” memory — allocated during runtime
o malloc()
e Global Memory
o Declared outside any function
o Can be accessed from any function
o Any global variables exists as long as your program is running

Memory Demo
(watch on your own time)

I ra HOC S Q.D r
('.ZC
(d.‘-‘
)

https://docs.google.com/file/d/1qxUTD1oTj9dr8QlN48IjQEKvvrgJWe0m/preview

malloc() and free()

e In this class, we think of memory as giant arrays that we can store variables
and programs in
e The Stack
o Where all your functions and local variables exist
o Once a function is returned, it gets “popped” off the stack

e The Heap
o “Dynamic” memory — allocated during runtime
o malloc()

e Global Memory
o Declared outside any function
o Can be accessed from any function
o Any global variables exists as long as your program is running

Binary and Hexadecimal

Binary

Y

N

w

s

16

|

~N

32
64
128

00

256

NNNNNmNNNN

No

[
o (o)

512
1024

Hexadecimal
Decimal | Binary | Hex
0 0000 0x0
1 0001 Ox1
2 0010 0x2
3 0011 0x3
4 0100 0x4
5 0101 0x5
6 0110 0x6
7 0111 0x7
8 1000 0x8
9 1001 0x9
10 1010 OxA
11 1011 OxB
12 1100 0xC
13 1101 0xD
14 1110 OxE

[
(92}

1111

OxF

161 =16

162 = 256
163 = 4096
16* = 65536

2’'s Complement

Signed integers (can represent positive or negative values)

Negative Numbers - 1 Most Significant Bit

Positive Numbers - 0 Most Significant Bit

Negate binary numbers : Invert (1's turn to 0’s and 0’s turn to 1’s) -> Plus 1

Binary Practice - 2s complement - 8 bits

Base 2:
Base 10: 95
Base 16;

Base 2: 10 1101
Base 10:
Base 16;

Base 2:
Base 10:
Base 16: F8

Base 2:
Base 10: -3
Base 16;

Binary Practice - 2s complement - 8 bits

Base 2: 0101 1111
Base 10: 95
Base 16: 5F

Base 2: 10 1101
Base 10: 45
Base 16: 2D

Base 2: 11111000
Base 10: -8
Base 16: F8

Base 2: 11111101
Base 10: -3
Base 16: FD

Bit Operators

& - Bitwise And
1&1=1
1&0=0
0&1=0
0&0=0

| - Bitwise Or

—

OO -

O -0 -
i1 n
O

O - -0

<< - Left Shift
1<<1=b10
1<<2=b100
1 <<3=b1000

>> - Right Shift
2>>1=1
2>>2=0
2>3=0

Notes:
2 >> -1 = undefined!
2 << -1 = undefined!

Logical (Boolean) Operators

&& - Logical And
T&&T=T
T&&F=F
F&& T=F
F&&F=F

|| - Logical Or
TIIT=T
TIIF=T
FI|T=T
FI|F=F

I - Logical Not
IT=F
IF=T

Boolean logic tricks

Setting a bit x | (1 << 2);
Clearing a bit x & ~(1 << 2);
Flip a bit: x A (1 << 2);

e What is the binary representation of the smallest 2C 16-bit integer?
e How to get -1 in binary without using - sign?

e Ilxis notx

e Bitmask: &(~0), &0, & OxFF

o -1+1=0

o XMNO:x™-1

o

o

o

Logic Simplification

|dentity

- A&1=A
- A&0=0

Associative

- A&(B&C)=(A&B)&C
- A[B|C)=(A|B)|C

Distributive

- A&(BJC)
- AI(B C)

(A&B)|(A&C)
(A|B)&(A|C)

More ldentity

- A&A=A
- A|A=A
- A&~A=0
- A|~A=1

De Morgan’s Law

- ~(A&B)=~A|~
- ~(A|B)=~A&~B

CMOS and Logic Gates

CMOS

PUN (Pull Up Network) PDN (Pull Down Network)
- Comments output to 1 (Vdd) - Connects output to 0 (Ground)
- pMOS Transistors - nMOS Transistors

PUN and PDN should be complimentary (Series and Parallel Gates)
Design
Start with PDN (when boolean expression evaluates to zero - negate expression)

Negat PDN expression to create complimentary PUN

Logic Gates

- - Lo

- | = | =
Sl Slw|olo Slalolo
— =]
@] (@) (@]
o|o wlolo|l- wlo|o|-
<|o <|o|~|o «<|o|~|o
S \/

Z & oon

> o | - 4

- - .

- = ~ |

glo Blo|w|- Slo|m|=
o = -

o (@) (@]

oo wlolo|l- o|o|ol-
g =] < Ll =] - di=1E =]
(]

z G mD_)_

x

MUX

C1Co

X0

X1

Co

C1

(b)

CMOS and Logic Gates Practice

Practice

Question 1 {25 pts}

Your job is to design a circuit that will take as input a 4-bit value and produces the output
1 if and only if the first two bits of the 4-bit value are the same as the last two bits.

For example, if I = 1010 then the circuit should output 1. If I = 1001 then the circuit
should output 0. In your diagram I; I2, I1 and Io should indicate the 4 bits of the input
where I3 is the MSB and I is the LSB. Remember that we cannot grade what we cannot
read so please make your diagrams as neat and clear as possible.

Part 1 {3 pts}: List all possible values for the input I that can result in the output being 1.
You do not have to list any input values that result in the output being 0. Please circle

your answer.

Practice

1111

1010
0101
0000

Practice

Part 3 {6 pts}: Design a gate-level non-PLA circuit that takes in the 4-bit input I and

produces the correct output. Please label the inputs and outputs of your circuit clearly on
your schematic.

Practice

EEP P

output

Practice

Part 4 {10 pts}: Design a proper CMOS circuit which takes in all 4 bits of the input I
and produces the output bit. You can assume that you also have access to negated
versions of all of the input bits. Your solution must be a single CMOS circuit consisting
of complementary pull up and pull down transistor networks. It should not involve
cascading multiple CMOS circuits. Please label the inputs and outputs of your circuit
clearly on your schematic.

1111
N S A O

1111
A S G B B A
1114

S T I O

I Y O I
TT 77

Practice

+_

s =0 J ks Ik]
AL T ks
AL J s ke
AT P ks

