Recitation 9/18

Welcome back!

Today’s Topics

- GDB

- Structs

- Valgrind

- Makefiles

- Q&Af time

GDB Quick Facts

e C cannot be debugged like Java can with the IDE debugger(think IntelliJ from
1200)
e Instead we use: gdb (GNU Debugger) for debugging

o Very useful in tracking undefined behavior and state of variables

Segmentation Fault?

e Segmentation Fault

o C doesn’t tell you much when it crashes, usually just prints: “Segmentation fault (Core
Dumped)”
e (Causes:
Dereferencing an uninitialized pointer
Dereferencing NULL
Using a previously freed pointer
Writing beyond the bounds of an array
Literally anything

o O O O O O

e GDB is incredibly useful for debugging a segmentation fault

Running GDB on a Program

Open terminal in the folder the executable is in
Run “gdb ./[executable]”

Enter “I” (lowercase L) to see the code, or use “tui enable” to get a nice GUI
o Tui = text user interface, shows a scrollable code page and your break points

Enter “break [line number]” to stop the executable before that line number
Type “run [command args]’ to run the program

Use “next” to pass over the next line(will pass over function calls)

Use “step” to go to the next line, will go inside a function of the line you are on
Use “continue” to run to the next break point

Use “print [variable]” or “p [variable]” to see the value of a variable

GDB “Cheat Sheet”

» run <command_line_args>
® Runs the program with specified command line arguments
+ backtrace

® Prints out the “trace” of where functions were invoked to get to
the current spot in the program

» up/down
® Can be used to look at the function who called us/we are calling
% print <expression>
® Prints out a value so that we can examine it
< quit
" Quit the program

GDB “Cheat Sheet” Part 2

)
*

+ tui enable
® Used to enable the Text User Interface

)
0’0

step

" Move forward a line, steps into a function if we call one

< hext

" Moves forward a line, doesn’t step into a function if called

continue
= Run until we crash, hit a breakpoint, or program finishes

)
0’0

)
’0

» breakpoints

® Next slide

gdb breakpoints

+» Usage:
" break <function_name>
" break <filename:line#>

« Example: break main.c:20
" info break

- Prints out information of all breakpoints
= del <id>

- Deletes the breakpoint with specified num.
- Get breakpoint num with info break

One last thing: printing arrays

e \We saw print <expression>, which works for basic variables, but it can also be
used for arrays

e Given an array named “my_array” and length = len:
o print*my_array@len
o Very helpful for printing out an array that is represented as a pointer

Makefiles!

This is mostly about writing Makefile btw

Makefiles - First of All, Why?

Not needed if your project is one C file, just put command in terminal
But what if your project is big, with many modules that depend off each other?

Example: PennPals from CIS 1200... but in C?

PennPals = a server tracking multiple chat rooms

Users, admins, server backend, protocols, chat rooms, and main are
individual components of the project that can be split into different files for
organization

Chat room management involves both users and admins

Server is composed of multiple chat rooms and protocols

Makefiles - First of All, Why?

Not needed if your project is one C file, just put command in terminal
But what if your project is big, with many modules that depend off each other?

Example: PennPals from CIS 1200... but in C?

PennPals = a server tracking multiple chat rooms

Users, admins, server backend, protocols, chat rooms, and main are
individual components of the project that can be split into different files for
organization

Chat room management involves both users and admins

Server is composed of multiple chat rooms and protocols

Makefiles - Why??7?

- If you're debugging only chatroom.c, do you need to recompile all 5+ files to

update the project?
- In this same scenario (chatroom.c), do you only need to recompile
chatroom.c?

Makefiles - just get to the point already!

Makefiles track each file’s dependencies

- If one file changes, all other files that use that file also need to be recompiled
- Makefile keeps track of that so we don’t have to remember

Components of a Makefile

Makefile is made of rules
Rules look something like this:
target: prerequisites
command
command

command

target: the file we are making using this rule

dependencies: Makefile needs to make sure
these files are up to date before it can compile
target

command: Makefile will run these in order to
get/compile the target

In this example, dependencies could be just one file or a list of files separated by spaces

(ile: prereq-0 prereq-l prereq-2)

How do | know what rules to add?

- Generally you want a clean rule, you will tell it to remove files that are listed

as target in the Makefile

- This is so when you run “make” again, it will recompile everything

clean:

rm *.o, executible 1, executible 2, executible 3

- In this week’s homework, we specify which rules you should add
- Iftarget x depends on a, b, and ¢, make sure you include 3 additional rules

where a, b, and c are each the target

Dependencies: which files do | choose? (.c, .h, .0, executable)

1. Most obvious dependency is: “where is your file being compiled from?”
- chatroom.c compiles to chatroom.o, which compiles to chatroom (executable file)
- Therefore, file.o depends on file.c, and file (executable) depends on file.o

2. In partial compilation, file.o also depends on file.h

3. Non-system #include statements on top of the .c file corresponding to target

Example: if chatroom.c contains #include “user.h” and #include “admin.h”, then:
- chatroom.o also depends on user.h and admin.h
- chatroom (the executable) also depends on user.o and admin.o

- If chatroom.c also contains #include <stdlib.h>, it's not a dependency you need to include

Makefile commands

In your single-file compilation command, you do both compilation and linking in
one step: clang-15 -g3 -gdwarf-4 -Wall -o file file.c
- Went straight from file.c to file (executable) without explicitly calling file.o

When multiple files (and dependencies) are involved, you split compiling and
linking into 2 separate commands

Makefile commands Example

Compile chatroom.c into chatroom. chatroom.c uses methods and structs
defined in user.c and admin.c

(Partial) Compiling:

chatroom.o: chatroom.c chatroom.h user.h admin.h
clang-15 -g3 -gdwarf-4 -Wall -c chatroom.c

Linking:

chatroom: chatroom.o user.o admin.o

clang-15 -g3 -gdwarf-4 -Wall -o chatroom chatroom.o user.o admin.o

Makefile tips

- Ensure your indents are all tabs and not spaces, otherwise Makefile won't
compile

- Draw a dependency DAG! The file containing main method will be the
source, and arrows will be drawn from target to dependency

