
CIS 2400, Fall 2024L18: I/O and FilesUniversity of Pennsylvania

I/O and Binary Files
Introduction to Computer Systems, Fall 2024

Instructors: Joel Ramirez Travis McGaha

Head TAs: Adam Gorka Daniel Gearhardt

Ash Fujiyama Emily Shen

TAs:
Ahmed Abdellah Ethan Weisberg Maya Huizar

Angie Cao Garrett O'Malley Kirsch Meghana Vasireddy

August Fu Hassan Rizwan Perrie Quek

Caroline Begg Iain Li Sidharth Roy

Cathy Cao Jerry Wang Sydnie-Shea Cohen

Claire Lu Juan Lopez Vivi Li

Eric Sungwon Lee Keith Mathe Yousef AlRabiah

CIS 2400, Fall 2024L18: I/O and FilesUniversity of Pennsylvania

Poll: how are you?

How are you? What is your mood looking like this week?

2

pollev.com/cis2400

CIS 2400, Fall 2024L18: I/O and FilesUniversity of Pennsylvania

3

Logistics

❖ Check-in06: Due EOD today incase you missed it.

❖ HW08 (Decoder) Due Friday 11/08 @ 11:59 pm

❖ Assignments will very likely take increasingly longer to
complete. Please please please try to not let the work
accumulate. Pretty please.

CIS 2400, Fall 2024L18: I/O and FilesUniversity of Pennsylvania

4

Let’s be real for a moment

CIS 2400, Fall 2024L18: I/O and FilesUniversity of Pennsylvania

Lecture Outline
❖ File I/O

❖ Binary files & Endianness

❖ Office Hours

5

CIS 2400, Fall 2024L18: I/O and FilesUniversity of Pennsylvania

Files Revisted

❖ Files are very simple objects – they consist of a sequence of bytes

❖ We could spend two weeks on files alone.

❖ Functionality:

➢ Open

➢ Read/Write

➢ Close

❖ Versatile:

➢ Across different machines, Files can represent a myriad of things.

6

We’re not going to do that.

CIS 2400, Fall 2024L18: I/O and FilesUniversity of Pennsylvania

How do we interact with Files?

❖ In Unix and Unix like systems, File * are pointers

❖ You can use these to refer to files that you’ve opened.

❖ Some files are already open for you when you run your
program.

The terminal itself is treated as a file

• you can “read from” and “write to” it

❖ Three file handlers your programs will always have

■stdin : standard-input (terminal)

■stdout : standard-output (terminal, for output)

■stderr : standard-error (terminal, for error message

7

CIS 2400, Fall 2024L18: I/O and FilesUniversity of Pennsylvania

How do we interact with Files?

❖ File * are pointers in Unix and Unix like systems

❖ You can use these to refer to files that you’ve opened in c

8

Our general ideas of files}

However, in Unix based systems, everything is just a file
even directories are

treated as files
The Cutest Mouse Videos Ever. #Squeak! |
Small Pet Select

Keyboards Mice Sockets

https://www.google.com/url?sa=i&url=https%3A%2F%2Fsmallpetselect.com%2Fcutest-mouse-videos-squeak%2F&psig=AOvVaw2wK9t098v-oNdZPZ5sVy8i&ust=1731038654856000&source=images&cd=vfe&opi=89978449&ved=0CBQQjRxqFwoTCIjrouKryYkDFQAAAAAdAAAAABAE

CIS 2400, Fall 2024L18: I/O and FilesUniversity of Pennsylvania

How do we interact with Files?

❖ We’ll keep it to these types of files in this course

9

You’ve already been interacting with files

(maybe not programs yet though)

But that will change.

CIS 2400, Fall 2024L18: I/O and FilesUniversity of Pennsylvania

File Interface Metaphor: Tape Drives

❖ Programs usually interact with files following a similar file
interface:

❖ Functions that model a sequential access device like
magnetic tape drives

10

I remember these…

CIS 2400, Fall 2024L18: I/O and FilesUniversity of Pennsylvania

File Interface Metaphor: Tape Drives

❖ Rewind: start at
beginning again

❖ others

Data already read

❖ Open a file for reading or writing

▪ (usually starting at the beginning of the file)

❖ Read/Write the file
▪ Each read/write advances the number of bytes read or written

Remaining data

in the file

Current position
11

CIS 2400, Fall 2024L18: I/O and FilesUniversity of Pennsylvania

File Interface Metaphor: Streams

❖ Another (more modern) abstraction is to think of I/O in
terms of “streams”

❖ Stream:

▪ A sequence of bytes that flows to and from a device

▪ We do not have access to whole file at once (some files are too
big to fit inside of memory easily)

Next bytes to read

31

... ...

Current position into the sequence

This ends up working sort of like an iterator over the file.

Where we can read current data, and/or insert new data

CIS 2400, Fall 2024L18: I/O and FilesUniversity of Pennsylvania

C Stream Functions (1 of 3)

❖ Some stream functions (complete list in stdio.h):

• Opens a stream to the specified file in specified file access mode

Returns NULL on error Do we create a new file if it doesn’t exist?
Are we reading the file?
Are we writing the file?

a FILE* returned by fopen

13

FILE* fopen(filename, mode);

❑ int fclose(stream);

❑ int fprintf(stream, format, ...);

❑ int fscanf(stream, format, ...);

❑ Writes a formatted C string like printf(...);but for files

❑ Closes the specified stream (and file)

❑ Reads data and stores data matching the format string

CIS 2400, Fall 2024L18: I/O and FilesUniversity of Pennsylvania

C Stream Functions (2 of 3)

❖ Some stream functions (complete list in stdio.h):

• Writes an array of count elements of size bytes from ptr to stream

• Reads an array of count elements of size bytes from stream to ptr

Pointer to the start of elements
in memory to write to file

Size of an
element

Number of
elements FILE*

Returns number of
elements actually
read/written ptr

"Array"

14

size_t fwrite(ptr, size, count, stream);

size_t fread(ptr, size, count, stream);

CIS 2400, Fall 2024L18: I/O and FilesUniversity of Pennsylvania

C Stream Functions (3 of 3)

❖ Some stream functions (complete list in stdio.h):

• Reads one character from stream (one byte)

• Writes one character from stream (one byte)

 char* fgets(char* str, int n, FILE* stream);

• Reads a string from the stream into the string str. Reads N

characters or until a newline character (or end of file).

15

int fgetc(FILE *stream);

int fputc(FILE *stream);

CIS 2400, Fall 2024L18: I/O and FilesUniversity of Pennsylvania

• Prints message followed by an error message related to errno to
stderr

C Stream Error Checking/Handling

❖ Some error functions (complete list in stdio.h):

• Checks if the error indicator associated with the specified stream is
set

• Resets error and EOF indicators for the specified stream

Extra information

Global variable

16

int ferror(FILE *stream);

int clearerr(FILE *stream);

int perror(char *s);

CIS 2400, Fall 2024L18: I/O and FilesUniversity of Pennsylvania

Terminal input/output

❖ C defines three file streams for terminal input/output

▪ Defined in <stdio.h>

▪ Opened at program start by default

▪ stdin: standard input (console)

▪ stdout: standard output (console, for normal output)

▪ stderr: standard error (console, for error output)

❖ The following are equivalent:

printf("Hello World!\n");

fprintf(stdout, "Hello World!\n");

17

CIS 2400, Fall 2024L18: I/O and FilesUniversity of Pennsylvania

18

Demo: copy.c

Let’s create a program that can make a copy
of a file
❖ Things to do when dealing with C stream I/O:

▪ Eventually we will hit the end of file, need to handle that

▪ Must ask for an amount of bytes/elements to be read.
Best practice is to request for a chunk of bytes/elements at a time
(e.g. 1024 or so)

CIS 2400, Fall 2024L18: I/O and FilesUniversity of Pennsylvania

19

Other Functions

❖ Many other functions not covered in lecture (not enough
time). Feel free to look up others and use them

❖ Some examples:
▪ int feof(FILE* f);

• check for end of file

▪ void rewind(FILE *f);

• start back at the beginning of file

▪ long ftell(FILE* f);

• gives the current position into the file

▪ int fseek(FILE* f, long offset, int whence);

• Reposition where we are in the file

CIS 2400, Fall 2024L18: I/O and FilesUniversity of Pennsylvania

20

Lecture Outline
❖ File I/O

❖ Binary files & Endianness

❖ Office Hours

CIS 2400, Fall 2024L18: I/O and FilesUniversity of Pennsylvania

21

Binary files & Serialization

❖ So far this lecture has focused we are working with files
that hold text (characters)

❖ Binary files also exist where data isn’t stored as
'characters'. (.obj files are an example)

❖ Some data/data-structures make more sense to be stored
in binary through a process called serialization.

Serialization is the process of converting data into a sequence of bytes
that can later be used to accurately reconstruct the original data.

CIS 2400, Fall 2024L18: I/O and FilesUniversity of Pennsylvania

Endianness

❖ In many architectures, there is one byte at each address
location

▪ For multi-byte data, how do we order it in memory?

▪ Data should be kept together, but what order should it be in?

▪ Example, store the 4-byte (32-bit) int:
0x A1 B2 C3 D4

❖ The order of the bytes in memory is called endianness

▪ Big endian vs little endian

Most significant Byte Least significant Byte

Each byte has its own address

22

CIS 2400, Fall 2024L18: I/O and FilesUniversity of Pennsylvania

Endianness

❖ Consider our example 0x A1 B2 C3 D4

❖ Big endian

▪ Least significant byte has highest address

▪ Looks the most like what we would read

▪ The standard for storing information on files/the network

❖ Little Endian

▪ Least significant byte has lowest address

▪ Your computer is probably LE

43

Most significant Byte Least significant Byte

0x2000 0x2001 0x2002 0x2003

A1 B2 C3 D4

0x2000 0x2001 0x2002 0x2003

D4 C3 B2 A1

Least significant Byte

Note how the hex digits

within a byte are still in the

same order

CIS 2400, Fall 2024L18: I/O and FilesUniversity of Pennsylvania

Practice Question pollev.com/cis2400

24

5

10

3

6

❖ If we have the following int which is four bytes. on a big-
endian machine, how would this be stored in memory?

int num = 0xCADEDADA;

A.

B.

C.

D.

E. I’m not sure

CA DE DA DA

DA DA DE CA

AC ED AD AD

AD AD ED AC

CIS 2400, Fall 2024L18: I/O and FilesUniversity of Pennsylvania

Practice Question pollev.com/cis2400

5

10

3

6

❖ If we have the following int which is four bytes. on a big-
endian machine, how would this be stored in memory?

int num = 0xCADEDADA;

A.

B.

C.

D.

E. I’m not sure

CA DE DA DA

DA DA DE CA

AC ED AD AD

AD AD ED AC

25

CIS 2400, Fall 2024L18: I/O and FilesUniversity of Pennsylvania

26

Endianness: Why it matters

❖ Since machines may store things in different byte
orderings, it causes problems when they share files or
communicate over the network.

❖ A standard ordering is used for storing binary data, big
endian (often called Network ordering).

❖ Need to make sure that we reassemble objects
correctly based on byte ordering
❖ Note: Re-assemblers are invaluable in network protocols

CIS 2400, Fall 2024L18: I/O and FilesUniversity of Pennsylvania

27

Endianness functions

❖ There are some functions out there that convert byte
orderings
▪ htons() -> Host to Network short (16 bits)

• Converts from Host byte ordering to network byte ordering

▪ ntohs() -> Network to Host short (16 bits)

• Converts from network byte ordering to host byte ordering

❖ “Network byte order” is big endian. Your “host” machine
Is little endian

❖ More info in <arpa/inet.h>

▪ Variants also exist for 32 bit and 64 bit conversion

CIS 2400, Fall 2024L18: I/O and FilesUniversity of Pennsylvania

Endianness
Today, classifying machines as strictly Little Endian or Big Endian is
not always straightforward.

Some machines can switch their Endianness dynamically, depending
on the needs of the application or the operating environment.

28

ARM processors: Many ARM processors can operate in either Little Endian or Big Endian
mode.

PowerPC processors: Commonly used in embedded systems, PowerPC processors can also
switch between Endianness modes based on software instructions.

CIS 2400, Fall 2024L18: I/O and FilesUniversity of Pennsylvania

29

Demo: Hex Dump (xxd)

❖ write_hex vs write_string

❖ Let’s see how integers are serialized (written) to a file
compared to strings!

CIS 2400, Fall 2024L18: I/O and FilesUniversity of Pennsylvania

30

That’s it! Next half of lecture is OH

Feel free to stay if you need help with any of the material.

We hope you can take care of yourself as much as possible these next couple of weeks.

	Default Section
	Slide 1: I/O and Binary Files Introduction to Computer Systems, Fall 2024
	Slide 2: Poll: how are you?
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30: That’s it! Next half of lecture is OH

