
CIS 2400, Fall 2024L13:  Midterm ReviewUniversity of Pennsylvania

Midterm Review
Introduction to Computer Systems, Fall 2024

Instructors: Joel Ramirez Travis McGaha

Head TAs: Adam Gorka Daniel Gearhardt

Ash Fujiyama Emily Shen

TAs:
Ahmed Abdellah Ethan Weisberg Maya Huizar

Angie Cao Garrett O'Malley Kirsch Meghana Vasireddy

August Fu Hassan Rizwan Perrie Quek

Caroline Begg Iain Li Sidharth Roy

Cathy Cao Jerry Wang Sydnie-Shea Cohen

Claire Lu Juan Lopez Vivi Li

Eric Sungwon Lee Keith Mathe Yousef AlRabiah



CIS 2400, Fall 2024L13:  Midterm ReviewUniversity of Pennsylvania

Midterm Review: Which Topic Next?

❖ Binary & 2C

❖ Binary C Programming

❖ C: Memory Diagrams

❖ C Programming: Strings & Output Parameters

❖ C Programming: Malloc & Double Pointers 

❖ CMOS, PLA, Gates

❖ Gate Delay

❖ Combinatorial Logic: Mux

2



CIS 2400, Fall 2024L13:  Midterm ReviewUniversity of Pennsylvania

Logistics

❖ Midterm Exam: This Thursday  “in lecture”

▪ Details released on the course website

❖ Midterm Review in recitation

▪ @4pm tomorrow (DRL 3C6)

▪ Extra Recitation offering at 7:30 tomorrow (Towne 100)

❖ HW04 Sample solutions and grades posted yesterday

❖ HW05 Sample Solutions (and grades probably) posted 
tonight

3



CIS 2400, Fall 2024L13:  Midterm ReviewUniversity of Pennsylvania

Binary & 2C

❖ There are about 236 students in the class and 27 staff. If 
we wanted to assign each of these individuals a unique 
numerical ID, how many bits would each ID need to be?

❖ Translate:

▪ -1 into 4-bit 2C

▪ 7 into 4-bit 2c

▪ 7 into 8-bit 2c

▪ 5 into 3bit unsigned
4



CIS 2400, Fall 2024L13:  Midterm ReviewUniversity of Pennsylvania

Binary C Programming

❖ Write the function reverse_bits() which takes an 
unsigned integer and returns a new unsigned integer but 
with the bits reversed
▪ Assume unsigned int is 32 bits long

▪ Input: 0000 … 0001 returns 1000 … 0000   (only 1 bit is a 1)

▪ Input : 1111 … 1111 returns 1111 … 1111   ( all bits are 1)

6

unsigned int reverse_bits(unsigned int num) {

}



CIS 2400, Fall 2024L13:  Midterm ReviewUniversity of Pennsylvania

C: Memory Diagrams

What does this
print?
What memory
errors are there?
How do we fix
them?

8

typedef struct {

  int x;

  int y;

} pair;

typedef struct {

  pair* data;

  size_t len;

} pair_arr;

int main() {

  pair p = (pair) {0, 1};

  pair_arr a = make_pair_arr(3, p);

  printf("%d %d\n", p.x, p.y);

  for (size_t i = 0; i < a.len; i++) {

    p = a.data[i];

    printf("%d %d\n", p.x, p.y);

  }

}

pair_arr make_pair_arr(size_t len, pair p) {

  pair_arr result;

  result.len = len;

  result.data = malloc(sizeof(pair) * len);

  for (size_t i = 0; i < len; i++) {

    p.x += i;

  p.y += i;

   result.data[i] = p;

  }

  return result;

}



CIS 2400, Fall 2024L13:  Midterm ReviewUniversity of Pennsylvania

C Strings & Output Params

❖ Complete the following function (on Codio)

20

// given a string, allocates and creates a new duplicate 

// of it and returns it through the output parameter "out".

// Returns false on error, returns true otherwise

bool str_duplicate(char* str, char** out) {

}



CIS 2400, Fall 2024L13:  Midterm ReviewUniversity of Pennsylvania

C Strings & Output Params

❖ Complete the main function

22

// given a string, duplicates it and returns it through

// the output parameter "out". Returns false on error

// returns true otherwise

bool str_duplicate(char* str, char** out);

// duplicates a string literal, 

// prints the duplicate, and runs without errors

int main(int argc, char** argv) {

  char* sample = "Hello World!";

}



CIS 2400, Fall 2024L13:  Midterm ReviewUniversity of Pennsylvania

C Programming: Malloc & Double Pointers

❖ We want to make a module that implements 2d matrices 
in C. We define the following struct
which holds a dynamically allocated
2-dimensional array.

❖ Implement the create_matrix() function which 
creates a matrix on the heap with the specified rows and 
cols. Assume malloc does not fail.

❖ Example: create_matrix(2, 3) should create a 2x3 matrix.
data points to 2 int*, each of those point to 3 ints.

24

typedef struct {

  int** data;

  int rows;

  int cols;

} matrix;

matrix* create_matrix(int rows, int cols) {

  // Implement this function. You need more than 1 line.

}

This problem may be on the harder side.
If space would have given you a memory diagram of the output



CIS 2400, Fall 2024L13:  Midterm ReviewUniversity of Pennsylvania

C Programming: Malloc & Double Pointers

❖ We want to make a module that implements 2d matrices 
in C. We define the following struct
which holds a dynamically allocated
2-dimensional array.

❖ Implement the free_matrix() function which 
deallocates the matrix allocated in create_matrix()

❖ Example: create_matrix(2, 3) should create a 2x3 matrix.
data points to 2 int*, each of those point to 3 ints.

26

typedef struct {

  int** data;

  int rows;

  int cols;

} matrix;

void free_matrix(matrix* m) {

  // Implement this function.

}



CIS 2400, Fall 2024L13:  Midterm ReviewUniversity of Pennsylvania

CMOS, PLAS, GATES

❖ Create a circuit that takes in an unsigned 4-bit input I 
(I3I2I1I0), and outputs a 1 if and only if the 4-bit input is a 
non-zero multiple of 7

▪ List the outputs that result in a 1 for the output

▪ Create a corresponding CMOS circuit

• Can assume you have the inverses of the Input bits

▪ Create a corresponding PLA circuit

▪ Create a corresponding gate level non-PLA circuit

29



CIS 2400, Fall 2024L13:  Midterm ReviewUniversity of Pennsylvania

CMOS, PLAS, GATES

❖ Create a circuit that takes in an unsigned 4-bit input I 
(I3I2I1I0), and outputs a 1 if and only if the 4-bit input is a 
non-zero multiple of 7

▪ List the outputs that result in a 1 for the output

▪ 7 (0b0111) and 14 (0b1110) 

30



CIS 2400, Fall 2024L13:  Midterm ReviewUniversity of Pennsylvania

CMOS

❖ Create a circuit that takes in an unsigned 4-bit input I 
(I3I2I1I0), and outputs a 1 if and only if the 4-bit input is a 
non-zero multiple of 7. You can assume you have inverse 
of the input signals.

▪ Overall Expression: (~I3 & I2 & I1 & I0) | (I3 & I2 & I1 & ~I0) 

31



CIS 2400, Fall 2024L13:  Midterm ReviewUniversity of Pennsylvania

CMOS Strategy 1 (Starting with PDN)

❖ Overall Expression: (~I3 & I2 & I1 & I0) | (I3 & I2 & I1 & ~I0)

❖ PDN Expression:  

▪ ~((~I3 & I2 & I1 & I0) | (I3 & I2 & I1 & ~I0)) // negate

▪ ~(~I3 & I2 & I1 & I0) & ~(I3 & I2 & I1 & ~I0) // De Morgan’s

▪ (I3 | ~I2 | ~I1 | ~I0) & (~I3 | ~I2 ~I1 | I0) // De Morgan’s

❖ Translated to PDN:

33



CIS 2400, Fall 2024L13:  Midterm ReviewUniversity of Pennsylvania

CMOS Strategy 1 (Starting with PDN)

❖ Flip PDN into PUN:

34



CIS 2400, Fall 2024L13:  Midterm ReviewUniversity of Pennsylvania

CMOS Strategy 1 (Starting with PDN)

❖ Connect PDN and PUN:

35

Not the only 
possible answer



CIS 2400, Fall 2024L13:  Midterm ReviewUniversity of Pennsylvania

CMOS Strategy 2 (Starting with PUN)

❖ Take the original expression:

▪ (I3 & I2 & I1 & ~I0) | (~I3 & I2 & I1 & I0) 

❖ Translate it directly into PDN but add a negation to each 
input

▪ This is because PMOS transistors
are “naturally negating”

▪ E.g., ~I3 becomes ~~I3 == I3

36



CIS 2400, Fall 2024L13:  Midterm ReviewUniversity of Pennsylvania

CMOS Strategy 2 (Starting with PUN)

❖ Flip PUN to get PDN

37



CIS 2400, Fall 2024L13:  Midterm ReviewUniversity of Pennsylvania

PLA

❖ Create a circuit that takes in an unsigned 4-bit input I 
(I3I2I1I0), and outputs a 1 if and only if the 4-bit input is a 
non-zero multiple of 7

39



CIS 2400, Fall 2024L13:  Midterm ReviewUniversity of Pennsylvania

Non-PLA

❖ Create a circuit that takes in an unsigned 4-bit input I 
(I3I2I1I0), and outputs a 1 if and only if the 4-bit input is a 
non-zero multiple of 7

41



CIS 2400, Fall 2024L13:  Midterm ReviewUniversity of Pennsylvania

Gate delay pt.1 

❖ Given the 4-bit incrementor that we created in lecture, 
how long do we have to wait to make sure that the 
output of the incrementor matches the input?

▪ Assume that each gate has a 1ns delay

▪ You can ignore delay from inverters

43



CIS 2400, Fall 2024L13:  Midterm ReviewUniversity of Pennsylvania

Gate delay pt.2 

❖ The 4-bit incrementor that we created in lecture is 
currently in a stable state showing the output of 1 + 0110. 
If the A input signals were to simultaneously flip to 0111, 
what would all signals be after 2ns

▪ Assume that each gate has a 1ns delay

▪ Ignore delays from inverters

▪ CarryIn0 stays the same

45

0

1

1

0

0

0

0

1

1

0

1

1

0



CIS 2400, Fall 2024L13:  Midterm ReviewUniversity of Pennsylvania

Combinatorial Logic: Mux

❖ Given inputs I0 I1 I2 I3 and selector bits S1 and S0 
draw a logic circuit using 2-to-1 muxes to implement the 
4-to-1 MUX. You can assume you have access to each 
bit/wire.

❖ Requirements:
▪ If S1S0 == 00, the output should be I0
▪ If S1S0 == 01, the output should be I1
▪ If S1S0 == 10, the output should be I2
▪ If S1S0 == 11, the output should be I3
▪ Clearly label the inputs, select lines, and output

❖ Yes, you are allowed to use more than one 2-to-1 mux
47



CIS 2400, Fall 2024L13:  Midterm ReviewUniversity of Pennsylvania

General Questions & Answers

❖ Take questions/requests from students

49


	Default Section
	Slide 1: Midterm Review Introduction to Computer Systems, Fall 2024
	Slide 2: Midterm Review: Which Topic Next?
	Slide 3: Logistics
	Slide 4: Binary & 2C
	Slide 6: Binary C Programming
	Slide 8: C: Memory Diagrams
	Slide 20: C Strings & Output Params
	Slide 22: C Strings & Output Params
	Slide 24: C Programming: Malloc & Double Pointers
	Slide 26: C Programming: Malloc & Double Pointers
	Slide 29: CMOS, PLAS, GATES
	Slide 30: CMOS, PLAS, GATES
	Slide 31: CMOS
	Slide 33: CMOS Strategy 1 (Starting with PDN)
	Slide 34: CMOS Strategy 1 (Starting with PDN)
	Slide 35: CMOS Strategy 1 (Starting with PDN)
	Slide 36: CMOS Strategy 2 (Starting with PUN)
	Slide 37: CMOS Strategy 2 (Starting with PUN)
	Slide 39: PLA
	Slide 41: Non-PLA
	Slide 43: Gate delay pt.1 
	Slide 45: Gate delay pt.2 
	Slide 47: Combinatorial Logic: Mux
	Slide 49: General Questions & Answers


