University of Pennsylvania L13: Midterm Review CIS 2400, Fall 2024

Midterm Review
Introduction to Computer Systems, Fall 2024

Instructors: Joel Ramirez Travis McGaha

Head TAs: Adam Gorka Daniel Gearhardt
Ash Fujiyama Emily Shen

TAs:

Ahmed Abdellah Ethan Weisberg Maya Huizar

Angie Cao Garrett O'Malley Kirsch Meghana Vasireddy
August Fu Hassan Rizwan Perrie Quek
Caroline Begg lain Li Sidharth Roy

Cathy Cao Jerry Wang Sydnie-Shea Cohen
Claire Lu Juan Lopez Vivi Li

Eric Sungwon Lee Keith Mathe Yousef AlRabiah

L13: Midterm Review CIS 2400, Fall 2024

Midterm Review: Which Topic Next?

+» Binary & 2C

+» Binary C Programming

+» C: Memory Diagrams

+» CProgramming: Strings & Output Parameters
% CProgramming: Malloc & Double Pointers

+ CMOS, PLA, Gates

+» Gate Delay

+» Combinatorial Logic: Mux

University of Pennsylvania L13: Midterm Review CIS 2400, Fall 2024

Logistics

» Midterm Exam: This Thursday “in lecture”

® Details released on the course website

. Midterm Review in recitation

" @4pm tomorrow (DRL 3C6)
= Extra Recitation offering at 7:30 tomorrow (Towne 100)

» HWO04 Sample solutions and grades posted yesterday

- HWO5 Sample Solutions (and grades probably) posted
tonight

University of Pennsylvania L13: Midterm Review CIS 2400, Fall 2024

Binary & 2C
» There are about 236 students in the class and 27 staff. If

we wanted to assign each of these individuals a unique
numerical ID, how many bits would each ID need to be?

» Translate:
= .1 into 4-bit 2C
= 7 into 4-bit 2c
= 7 into 8-bit 2c

" 5into 3bit unsigned

University of Pennsylvania L13: Midterm Review CIS 2400, Fall 2024

Binary C Programming

+ Write the function reverse bits () which takesan
unsigned integer and returns a new unsigned integer but
with the bits reversed
= Assume unsigned int is 32 bits long
" |nput: 0000 ... 0001 returns 1000 ... 0000 (only1bitisal)
" lnput: 1111 .. 1111 returns1111 ... 1111 (allbitsare1l)

(unsigned int reverse bits (unsigned int num) {

University of Pennsylvania

L13: Midterm Review

C: Memory Diagrams

CIS 2400, Fall 2024

4 X(.. : | ' h

typedef struct { pair arr make pair arr(size t len, pair p) {
int x; palr arr result;
int y; result.len = len;

} pair; result.data = malloc(sizeof (pair) * len);
for (size t i = 0; 1 < len; i++) {

typedef struct { p.x += 1;
pair* data; p.y += 1i;
size t len; result.datali] = p;

} pair arr; }

\ < return result;

(int main () { U J
pair p = (pair) {0, 1}; What does this
pair arr a = make pair arr(3, p); :
printf ("%d %d\n", p.x, p.Yy); erWt?
for (size t i = 0; i < a.len; i++) f{ What memory

p = a.datal1i];
printf ("5d 5d\a", p.%, D.y); errors are there?
) How do we fix
|} Jthem?

University of Pennsylvania L13: Midterm Review CIS 2400, Fall 2024

C Strings & Output Params

+ Complete the following function (on Codio)

(// given a string, allocates and creates a new duplicate
// of it and returns it through the output parameter "out".
// Returns false on error, returns true otherwise

bool str duplicate(char* str, char** out)

20

CIS 2400, Fall 2024

University of Pennsylvania L13: Midterm Review

C Strings & Output Params

+» Complete the main function

/7/ given a string, duplicates it and returns it through
// the output parameter "out'". Returns false on error
// returns true otherwise

bool str duplicate(char* str, char** out);

// duplicates a string literal,
// prints the duplicate, and runs without errors
int main(int argc, char** argv) {

char* sample = "Hello World!";

22

University of Pennsylvania L13: Midterm Review CIS 2400, Fall 2024

Is problem may be on the harder sid
If space would have given you a memi)\}ldla ram of the output

C Programming: Malloc & Double Pointers

+» We want to make a module that implements 2d matrices
in C. We define the following struct rtypedef struct { |
which holds a dynamically allocated] "F"~ 98t

int rows;
2-dimensional array. int cols;

} matrix;

+ Implement the create matrix () function which

creates a matrix on the heap with the specified rows and
cols. Assume malloc does not fail.

)

&

+ Example: create_matrix(2, 3) should create a 2x3 matrix.
data pointsto 2 int*, each of those pointto 3 ints.

D)

matrix* create matrix(int rows, int cols) {
// Implement this function. You need more than 1 line.

}

University of Pennsylvania L13: Midterm Review CIS 2400, Fall 2024

C Programming: Malloc & Double Pointers

+» We want to make a module that implements 2d matrices
in C. We define the following struct 'tYPedef struct { |
which holds a dynamically allocated] "F"~ 98t

int rows;
2-dimensional array. int cols;

} matrix;

» Implement the free matrix () function which
deallocates the matrix allocated in create matrix ()

» Example: create_matrix(2, 3) should create a 2x3 matrix.
data points to 2 int*, each of those pointto 3 ints.

vold free matrix(matrix* m) {
// Implement this function.

University of Pennsylvania L13: Midterm Review

CIS 2400, Fall 2024

CMOS, PLAS, GATES

+ Create a circuit that takes in an unsigned 4-bit input |
(151,1115), and outputs a 1 if and only if the 4-bit input is a
non-zero multiple of 7
= |ist the outputs that result in a 1 for the output
" Create a corresponding CMOS circuit

- Can assume you have the inverses of the Input bits

" Create a corresponding PLA circuit

" Create a corresponding gate level non-PLA circuit

29

University of Pennsylvania

L13: Midterm Review

CIS 2400, Fall 2024

CMOS, PLAS, GATES

+ Create a circuit that takes in an unsigned 4-bit input |

(151,1115), and outputs a 1 if and only if the 4-bit input is a
non-zero multiple of 7

= |ist the outputs that result in a 1 for the output
= 7(0b0111) and 14 (Ob1110)

30

University of Pennsylvania

L13: Midterm Review

CIS 2400, Fall 2024

CMOS

» Create a circuit that takes in an unsigned 4-bit input |
(151,1115), and outputs a 1 if and only if the 4-bit input is a

non-zero multiple of 7. You can assume you have inverse
of the input signals.

" QOverall Expression: (VI3 & 1, & I, & 1) | (I; &1, & 1; & ~I,)

31

University of Pennsylvania L13: Midterm Review CIS 2400, Fall 2024

CMOS Strategy 1 (Starting with PDN)

+ Overall Expression: (M, & I, & I; & 1y) | (15 &1, & 1; & ~I,)
«» PDN Expression:

= (VL &L &L &) | (&1L, &1, &™) // negate

= (VL &L & &) &~(I; &1, &1, &™) // De Morgan’s

o (PO e P i PR [9 </ o PO B PR PR I Y // De Morgan’s

« Translated to PDN:

I

AL

Qﬂ L]

33

University of Pennsylvania L13: Midterm Review CIS 2400, Fall 2024

CMOS Strategy 1 (Starting with PDN)

+ Flip PDN into PUN:

~1, 4# o ‘O—|
S B [L o
| —‘ — —, ‘— -, A i
L — — -, 4 | ‘O_ E
T — | -
~I —{ — }— -l }— ! a dl o— I

.
.

34

L13: Midterm Review

CIS 2400, Fall 2024

CMOS Strategy 1 (Starting with PDN)

« Connect PDN and PUN:

T

Not the only
possible answer

o—1,

O— -~

+ Output
B [L
|
] [— —
I [L
T Y [
1 l_v [I

35

University of Pennsylvania L13: Midterm Review CIS 2400, Fall 2024

CMOS Strategy 2 (Starting with PUN)

+» Take the original expression:
" (L &L&L &™) | (Y &1, &I, &1,)
+» Translate it directly into PDN but add a negation to each

input T
" This is because PMOS transistors J _
are “naturally negating” -, ﬂ \o— X
= E.g., ~l; becomes ~~l; == I, B
S =
- —d - oO— ~I

36

University of Pennsylvania

L13: Midterm Review

CIS 2400, Fall 2024

CMOS Strategy 2 (Starting with PUN)

+ Flip PUN to get PDN

]

N - |
% -, g ‘— -

| | - [

I — |
‘— g #] %]

-

37

University of Pennsylvania L13: Midterm Review CIS 2400, Fall 2024

PLA

+ Create a circuit that takes in an unsigned 4-bit input |
(151,1115), and outputs a 1 if and only if the 4-bit input is a
non-zero multiple of 7

39

University of Pennsylvania L13: Midterm Review CIS 2400, Fall 2024

Non-PLA

+ Create a circuit that takes in an unsigned 4-bit input |
(151,1115), and outputs a 1 if and only if the 4-bit input is a
non-zero multiple of 7

41

University of Pennsylvania L13: Midterm Review CIS 2400, Fall 2024

Gate delay pt.1

+ Given the 4-bit incrementor that we created in lecture,
how long do we have to wait to make sure that the
output of the incrementor matches the input?

" Assume that each gate has a 1ns delay Carrying
. . 1 1
" You can ignore delay from inverters A+ + =
Carrylml CarryOut;
An Cin 1 L
A1 ‘,'l » + “ I"S-I
°——CD_ Ca;rrylnzl Ca1rry0ut1
? S A+ + K »S,
1 I ' " Carryln CarryOut;
3
(N 1\
A‘j -+ + b S
L \ c - 1 3
T_ / out CarryOut;

43

University of Pennsylvania

L13: Midterm Review

Gate delay pt.2

o0

CIS 2400, Fall 2024

The 4-bit incrementor that we created in lecture is
currently in a stable state showing the output of 1 + 0110.
If the A input signals were to simultaneously fllp to 0111,

what would all signals be after 2ns
= Assume that each gate has a 1ns delay
= |gnore delays from inverters

" Carryln, stays the same
An Cin

+—1O
h

out

)
/

Carrylnol

1

1
|

1

Carrylml ((Z)arryOutU

1
\

1A

1

Carrylnzl 6arry0ut1

1
A +

1
A

PS1

1

1

C

Carrylns] O

1

__.4.

arryOut;

1
A

sz

1

C

arryOut;

0

45

University of Pennsylvania L13: Midterm Review CIS 2400, Fall 2024

Combinatorial Logic: Mux

+ Giveninputs I, I, I, I, andselectorbitsS;andS,
draw a logic circuit using 2-to-1 muxes to implement the
4-to-1 MUX. You can assume you have access to each
bit/wire.

» Requirements:

" If 5,5, == 00, the output should be I,
" If S;S, == 01, the output should be T,
" IfS;S, == 10, the output should be T,
" If 5;S, == 11, the output should be T,

" Clearly label the inputs, select lines, and output

+ Yes, you are allowed to use more than one 2-to-1 mux

47

L13: Midterm Review CIS 2400, Fall 2024

General Questions & Answers

+» Take questions/requests from students

49

	Default Section
	Slide 1: Midterm Review Introduction to Computer Systems, Fall 2024
	Slide 2: Midterm Review: Which Topic Next?
	Slide 3: Logistics
	Slide 4: Binary & 2C
	Slide 6: Binary C Programming
	Slide 8: C: Memory Diagrams
	Slide 20: C Strings & Output Params
	Slide 22: C Strings & Output Params
	Slide 24: C Programming: Malloc & Double Pointers
	Slide 26: C Programming: Malloc & Double Pointers
	Slide 29: CMOS, PLAS, GATES
	Slide 30: CMOS, PLAS, GATES
	Slide 31: CMOS
	Slide 33: CMOS Strategy 1 (Starting with PDN)
	Slide 34: CMOS Strategy 1 (Starting with PDN)
	Slide 35: CMOS Strategy 1 (Starting with PDN)
	Slide 36: CMOS Strategy 2 (Starting with PUN)
	Slide 37: CMOS Strategy 2 (Starting with PUN)
	Slide 39: PLA
	Slide 41: Non-PLA
	Slide 43: Gate delay pt.1
	Slide 45: Gate delay pt.2
	Slide 47: Combinatorial Logic: Mux
	Slide 49: General Questions & Answers

