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0 Poll Everywhere pollev.com/tqm

+» How are you? Any Questions from last lecture?
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Upcoming Due Dates

» HWO2 (C Strings!): Due This Friday

" |f you are having issues with valgrind, add —gdwarf-4 to all of the
compilation commands in the makefile

» HWO3 (RPN):
= Due Friday Next week, posted sometime tomorrow.
" Demo in beginning of lecture on Tuesday

» Next Lecture Check-in posted tonight or tomorrow
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Recitation

+» Wednesday’s 4PM — 5PM
= DRL 3C6

+ Super useful if you need any extra help or want to review
topics.

+ Slides are posted and it is recorded

+» GDB, Valgrind, Makefiles, and etc. covered this week

» Makefile slides look really solid!
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Lecture Outline

< void*

» Boolean Algebra

» Physics Background
+» CMOS Transistor

% CMOS Logical Circuits
«» CMOS Circuit Design
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memcpy

void *memcpy(void *dest, const void *src, size t n);

+» memcpy is a function that copies a specified number of
bytes at one address to another address.

» It copies the next n bytes that src points to to the location
pointed to by dest. (It also returns dest). It does not
support regions of memory that overlap.

int x = 5;
int y = 4;
memcpy (&x, &y, sizeof(x)); // just like x = y;
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memmaove

void *memmove(void *dest, const void *src, size t n);

< memmove is the same as memcpy but supports overlapping
regions of memory. (Unlike its name implies, it still
“copies”).

*

+ It copies the next n bytes that src points to to the location
pointed to by dest. (It also returns dest).

L)
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Introducing Void *

void swap(void *datal, void * data2, size t nbytes) {
char temp[nbytes];
// store a copy of datal in temporary storage
memcpy (temp, datalptr, nbytes);

// copy data2 to location of datal
// copy data in temporary storage to location of data2

We can copy the bytes ourselves into temp!
This is equivalent to temp = *datalptr in
non-generic versions, but this works for any
type of any size.
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Introducing Void *

void swap(void *datal, void * data2, size t nbytes) {
char temp[nbytes];
memcpy (temp, datalptr, nbytes);

// copy data2 to location of datal
// copy data in temporary storage to location of data2

How can we copy data2 to the location of datal?
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Introducing Void *

void swap(void *datal, void * data2, size t nbytes) {
char temp[nbytes];
memcpy(temp, datalptr, nbytes);
memcpy(datalptr, data2ptr, nbytes);

// copy data in temporary storage to location of data2

How can we copy data2 to the location of datal?
memcpy!

10
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Introducing Void *

void swap(void *datal, void * data2, size t nbytes) {
char temp[nbytes];
memcpy(temp, datalptr, nbytes);
memcpy(datalptr, data2ptr, nbytes);
memcpy (data2ptr, temp, nbytes);

Our last step, copy data in temp into data2

11
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Introducing Void *

void swap(void *datal, void * data2, size t nbytes) {
char temp[nbytes];
memcpy(temp, datalptr, nbytes);
memcpy(datalptr, data2ptr, nbytes);
memcpy(data2ptr, temp, nbytes);

int x = 2;
int y = 5;
swap(&x, &y, sizeof(x));

12
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Introducing Void *

void swap(void *datal, void * data2, size t nbytes) {

char temp[nbytes];

memcpy(temp, datalptr, nbytes);
memcpy(datalptr, data2ptr, nbytes);
memcpy(data2ptr, temp, nbytes);

short x = 2;
short y = 5;
swap(&x, &y,

sizeof(x));

13
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Introducing Void *

void swap(void *datal, void * data2, size t nbytes) {
char temp[nbytes];
memcpy(temp, datalptr, nbytes);
memcpy(datalptr, data2ptr, nbytes);
memcpy(data2ptr, temp, nbytes);

char *x = "2";
char *y = "5";
swap(&x, &y, sizeof(x));

14
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Introducing Void *

void swap(void *datal, void * data2, size t nbytes) {
char temp[nbytes];
memcpy(temp, datalptr, nbytes);
memcpy(datalptr, data2ptr, nbytes);
memcpy(data2ptr, temp, nbytes);

mystruct x = {..};
mystruct y = {..};
swap(&x, &y, sizeof(x));

15
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C Generics and Void *

*¢ We can use void * and memcpy to handle memory as generic
bytes.

s If we are given where the data of importance is, and how big it
is, we can handle it!

void swap(void *datalptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
memcpy(temp, datalptr, nbytes);
memcpy(datalptr, data2ptr, nbytes);
memcpy(data2ptr, temp, nbytes);

16
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C Generics and HWO02

+» Problem: We need to implement our own memcpy in the

homework, we can’t call memcpy ourselves ®

+» How do we implement memcpy?

rvoid *memcpy (void *dest, void* src, size t n) {

char *dest ptr = (char*) dest;
char *src ptr = (char*) src;
//

// can now dest ptr[0] = src ptr[0]
// to copy one byte

CIS 2400, Fall 2024
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+» CMOS Transistor
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Disclaimer

+» We just talked about bit-wise logical operators, and | will
be using bit-wise operator syntax for the next section
= 1 is still equal to TRUE
= QOis still equal to FALSE

/

+ It may be easier to think of this next section as applying
specifically to Boolean data types

® (Though this can also be applied to bit-wise operators)
- Treat True as the "all 1" bit pattern

- Treat False as the "all 0" bit pattern

19
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Boolean rules

» ldentity +» More ldentity
= A&1=A = A&A=A
" AR0=0 " A|A=A
" All1=1 " AR~A=0
" A|0=A = A|~A=1

= ~~A =NOTNOTA=A
Wore on Pe Moraawn’s later
+ Associative + De Morgan’s Law
" A& (B&C)=(A&B)&C = ~(A&B)="~A|~B
"Al(B|C)=(A]B)|C = ~(A|B)="~A&"~B
- Distributive
"= A&B|C)=(A&B)| (A&C)

"A|l(B&C)=(A]|B)&(A]C)

20
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Truth Tables

+ A table you can write for an expression to represent all
possible combinations of input and output for an
expression

+ Truth Table for (A & (A & ~B)):

— = O O
R O —» O
©c r»r O O

21
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Boolean Simplification

+» We can apply rules to simplify Boolean patterns

+» Consider the previous example
= (A& (A&™B))
" ((A&A)&~B) // By associative property
= (A&™~B) // By distributive Property

« Consider:
" (A|B)&(A ]| ~B)

22
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Boolean rules

» ldentity
" A&1=A
"= AXRO=0
= All1=1
= A|0O=A
= ~~A =NOTNOTA=A
+ Associative
" A&(B&C)=(A&B)&C
"A[(B[]C)=(A]B)]|C
- Distributive
" A&(B|C)=(A&B)|(A&C)
"A|(B&C)=(A[B)&(A]C)

+ More ldentity
"= ARA=A
" A|A=A
" AR~A=0
= A|~A=1

Wore on e WMorgan's soou
+» De Morgan’s Law

" ~(A&B)="A|"~B
" ~(A]|B)="A&"B

Simplify:
(A | B)&(A|~B)

pollev.com/tqm

CIS 2400, Fall 2024
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Boolean Simplification

+» We can apply rules to simplify Boolean patterns

+» Consider the previous example
= (A& (A&™B))
" ((A&A)&~B) // By associative property
= (A&™~B) // By distributive Property

Simplification can have

«» Consider: WMultiple correct simplifications

(A|B)&(A]|~B)

A | (B &~B) // by distributive property
= A|O // by identity property

= A // by identity property

24
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De Morgan’s Law

+» De Morgan’s Law
= ~(A&B)="~A| "B
= ~(A|B)=~A&"~B

+» Provides a way to convert between AND to OR
= (with some help from NOT)

+ Truth Tables for proof:

mmmml-

0 1 1 1 1
0 1 0 0 1 1
1 0 0 0 1 1
1 1 0 0 0 0

25
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De Morgan’s Law: Demo

+» Write a statement equivalent to OR, but without using OR

= A|B
= ~~(A | B) // identity property
= ~(~A & ~B) // De Morgan’s Law

+ This still works for multi-bit data and bitwise operations

26
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Boolean rules

These apply to multi-bit operations as well!

% |dentity Bit-wise operations just follow these N times for N bits

" A&1=A +» More ldentity
B AR&0O=0 "= ARA=A

= All=1 = A|lA=A
.AlO:A -A&"’A=0

= ~~A =NOTNOTA=A = A|~A=1

+ Associative
" A& (B&C)=(A&B)&C
"A|(B|C)=(A|B)|C

- Distributive
" A&(B|C)=(A&B)|(A&C)
"A|(B&C)=(A[B)&(A]C)

+» De Morgan’s Law
" ~(A&B)="A|"B
= ~(A|B)=~A&"B

27
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Disclaimer:

% This course is NOT assuming you know E&M Physics

" |t may help to have some background
" | am going to give a VERY simplified view of E&M Physics

+ If you want to know more of the details with transistors &
how they work, courses like ESE 2150 (Electrical Circuits
and Systems) may appeal to you

29
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Charge, Current, Voltage simplification

+» Charge can be either positive or negative

" Electrons are common units of negative charge and can move
through conductive material

= Like charges repel, opposite charges attract

+ Current: the rate of flow of positive charge

0

+» Voltage: Positive charge want to move from places with
high voltage to lower voltage

= (vice versa for negative charge)

= sometimes called “electric pressure”
= Measured relative to a reference point (usually called “ground”)

30
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This is a big

Voltage & Current Analogy simplification

» Imagine we have a slanted pipe
" One end on the ground, the other end is in the air
= Water is placed in the high end of the pipe
" What happens next?

ground

31
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This is a big

Voltage & Current Analogy simplification

+» Water flows to the bottom!
" The water can be thought of positive charge
= Positive charge moves form higher voltage to lower voltage

Higher Voltage cCurrent = water flow rate
|

\/ Lower Voltage
/

32
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Circuit example

+ Consider the following example circuit

+3V
- .
Battery creates a [ <> Current flows from higher
voltage difference § voltage to lower voltage.
>
” v
<~ OV

N

Current passes through a

This indicates our refence
lightbulb, turning it on

for O volts called “ground”
33
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Circuit example w/ Switch

« Circuits can also have a switch

" The switch can be open or close rL
>
2 D
If the switch is closed, chargecan ___, |8
flow through like it is a wire = S
\ 4
<~ OV
-
Q
8 D
If the switch is open, charge —~ | &
cannot flow through - S
~

34
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What Is a Transistor (MOSFET Type)?

+ An electrical device that acts as an electrical switch; it’s
typically made from Silicon
= 3 electrical contacts/terminals: Gate, Drain, Source

= Gate controls flow of current between Drain and Source
terminals; this style transistor is called a MOSFET

Current Equivalent When gate has
flows! circuit A positive
G D when transistor voltage,
. is ON Lo
Light turns using a simple switch is ON...
s JON switch S we have a
closed circuit

4—- 3V Battery [}— q—- 3V Battery [J—
=)
<

¢ 3v Battery i < 3V Battery [

ov
NO When gate has
current Equivalent 0 Volts
fl | circuit D . .
D Ows: when transistor switch is OFF...
_|G . _is OFF we have an
S gg’;t turns ”S'”fvztsc’,']"p/e < open circuit
ov 35
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+» Boolean Algebra

+ Physics Background

< CMOS Transistor (Skipped)
% CMOS Logical Circuits

«» CMOS Circuit Design

CIS 2400, Fall 2024
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Skipped in Lecture, here if you want

Two Types of MOSFET -« <cc i theugn

There is also extra slides on website

+ nMQOS
= GATE Voltage MUST BE > Body, Source, Drain to be ON
= (voltage must be high)

» pMOS
= GATE Voltage MUST BE < Body,Source, Drain to be ON
= (Voltage must be low)

O . :
Source® Gate O Drain SourceT ? Gate T Drain
/[ == ==
[ |

[FFFFFF T\

| | | || | | | I
L N B J R T T e

PR R Rt Rk T b it STE e e e e e

\i; Body Body
nMOSFET pMOSFET
D S
G
— ﬁ g |f’
> Do ot forget +o/ D

draw the circle. 37
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CMOS: pMOSFET & nMOSFET in Complement

Skipped in Lecture, here if you want
to see it though

3V on the input (the gates) turns the light OFF! There is also extra slides on website

* What if the input is set to OV?
* OV turns NMOS OFF
* OV turns PMOS ON
« Light has “3V” across it!
« Current flows in this circuit, so light turns !

S
G ov
q 3V —
& N .D& > IN P
(¢D) ()
= D =
(0] ® [
oM G | C) m oV /
> >
L : L 0
< oV oV

38



CIS 2400, Fall 2024

University of Pennsylvania LO7: CMOS Transistor Circuits

CMOS: pMOSFET & nMOSFET in Complement

Skipped v Lecture, here if you want to see it thouah

There is also extra slides on website

4L »
O

i

Q—- 3V Battery —

lz
&
o @)
o
S
3V Battery
=
E
w
<

ov

o
<

i3V Battery —— {3V Battery f—
o
2

39
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More Common Electrical Symbols

Skipped v Lecture, here if you want to see it thouah

There is also extra slides on website

o
.G—I O —

- N4

Battery ——-
o wn

3V

< o

Standard notation to use going forward
‘ High Voltage \J
(3V, vdd, etc)

6 Low Voltage (QV),
typically ground
(GND)

Circuit Drawings so far

40



University of Pennsylvania LO7: CMOS Transistor Circuits CIS 2400, Fall 2024

Lecture Outline

o volid¥*

» Boolean Algebra

» Physics Background

+» CMOS Transistor

+» CMOS Logical Circuits
«» CMOS Circuit Design
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Voltages as Bits

% Transistors are the basis for all digital electronics

= We've seen that they work by controlling the flow of charge

+» We can map bits onto different voltages:

H (a7 K
= High voltage — we’ll call this state “1 Only two
: | Il call thi Ot
Low voltage — we’ll call this state “0 voltages
Digital Values » = “0” lllegal L
I l l . I
Analog Values » (I) 0?5 2l.4 219 Volts

Computers use transistors as switches to manipulate bits
» Before transistors: tubes, electro-mechanical relays (pre 1950s)
« Mechanical adders (punch cards, gears) as far back as mid-1600s

42
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CMOS Transistors Simplified
nWos

Input | Output

1 Connected

_| 0 Dis-connected

43
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CMOS Transistors Simplified

—

7G|

Circle = ”m@@ﬁﬁom”

pWMos

Input

Output

Dis-connected

Connected

CIS 2400, Fall 2024
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CMOS Transistors Simplified

Circle = ”ma@aﬂom”

-

—_—

-

—

pWMos

NWMos

Input | Output

1 Dis-connected
0 Connected
Input | Output

1 Connected

Dis-connected

45
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CMOS Circuits as Logical Circuits

+ Instead of thinking of voltages, we can analyze our circuit
think of in terms of bits “1” or “0 Vdd -4 “sonrce”

+» Consider our previous circuit:

" Qutput is the same as whatever

=

IN = *+— OuT

“source” it is connected to ) \O(/H‘P(/H’ con
= pMOS: on when input is low, / only be

" nMOS: on when input is high N connected 1o

P & / one “source”

« Truth Table GND - D “source” at a time
o s wosse Jounu
Disconnected Connected —_ This 1s the same
0 Connected Disconnected 1 as a "NOT”

operatiov
46
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PUN & PDN

+» We can split our "NOT" circuit into two halves:
Vdd -1 “source”

% Pull Up Network (PUN)
= “Pulls” the output “Up” to “1”
XL can only contain pMOS Transistors
= “Pulls” the output “down” to “0”
{X <X = can only contain nMOS Transistors

GND - D “source”

<£X Output can only be connected to “1” or “0” at any time
%X Exactly one of PUN or PDN can be “ON” at a time

+» We will see more complex examples in a moment

47
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NMOS & pMOS in PUNs & PDNs

» In a digital circuit there are only two relevant voltage
levels, the low voltage level, GND (0), and the high
voltage level, Vdd (1).

" An nMOS transistor is only ON when the gate voltage is higher
than the source and drain voltages

= A pMOS transistor is only ON when the gate voltage is lower than
the source and drain voltages

+» Therefore, an nMOS transistor can only be used to pass a
low voltage and a pMOS transistor can only be used to
pass a high voltage

» nMOS can only be used for the PDN
» PMOS can only be used for the PUN .8
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The NAND (NOT-AND) Circuit

» NAND == NOT AND == ~(A & B)

Note: parallel structure on top,
series on bottom

A 4 L[ - Parallel Transistors: only one needs to be on for a
connection to be made across them

B—t ¢ (Similar to using an OR)
L Series Transistors: BOTH need to be on for a
B connection to be made across them
4 (Similar to using an AND)

NAND Transistor Level

49
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The NAND (NOT-AND) Circuit

< NAND == NOT AND == ~(A & B) Sample Input: A=0, B=1

>

Note: parallel structure on top,

series on bottom
A=0
B=1—
A4l Y4
B— C
|: NAND
[ Truth Table
A B C
Y 0 O 1
NAND Transistor Level === -=-o
€“_ 1] 1
1 0 1
1 1 ?

50
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The NAND (NOT-AND) Circuit

+ NAND == NOTAND == ~(A & B)  Semple nput:4=T, &=1

Note: parallel structure on top, T T
series on bottom K o
=1 L Pt P
B=1 — C=0
T ETGj
B—o < C
|: NAND
[ Truth Table
A
Y 0
NAND Transistor Level 0
1 0.
("1

~ -
N e ——

51
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The NAND (NOT-AND) Circuit

Sample Input: A=0, B=1

Note: parallel structure on top, A=0
series on bottom
B=1—
———— 'N
A—19
N
B—u C <
|: A B C
0 0 1
B @ 1| 13
1 0 1
N4 1 1 0
NAND Transistor Level
NAND Gate

Truth Table

52
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0 Poll Everywhere pollev.com/tqm

q |
A Output
L
N
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@ Poll Everywhere pollev.com/tqm

+ |Is this legal, if so, what’s the truth table? If not, why?

o [ Legall
A 5 Output
L
N

A | Output
0O |1
1 |0

~A = output

This 1s the “mot”circnit

54
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0 Poll Everywhere pollev.com/tqm

Output

55



University of Pennsylvania LO7: CMOS Transistor Circuits CIS 2400, Fall 2024

@ Poll Everywhere pollev.com/tqm

+ |Is this legal, if so, what’s the truth table? If not, why?

. [ Uses nmos Lllegal
_/ for puw
B n |
| L+ . why?

N Uses pmos
for pdv

56
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0 Poll Everywhere pollev.com/tqm

+ |s this legal, if so, vxhat’s the truth table? If not, why?

- .

T Output

57
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@ Poll Everywhere pollev.com/tqm

+ |s this legal, if so, vxhat’s the truth table? If not, why?

A
" d |
B Legall
B " O‘ A | B | Output
1 Output 0 10 |1
0O |1 |0
. o o
A 1 1 [o
N V ~(A|B) = output

This is “nor”

58
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0 Poll Everywhere pollev.com/tqm

+ |Is this legal, if so, what’s the truth table? If not, why?

+ Output

59
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@ Poll Everywhere pollev.com/tqm

+ |Is this legal, if so, what’s the truth table? If not, why?

Ill@@al
° T ! B — Wihy?

+ Output
Consider inputs

N
— a=0
b =1

N N

gromnd avd power both

60
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Rules & Suggestions For Design

+ Rules:
" You cannot have pMOS transistors in the PDN
" You cannot have nMOS in the PUN

= Exactly one of PDN/PUN must be “on” at a time
- Cannot have neither connected to output
- Cannot have both connected to output

= Every transistor in the PDN must have a complimentary transistor
in the PUN

- When any transistor is PDN is ON, its compliment transistor is OFF

% Suggestions
= Start with the PDN and then do the PUN (most find it easier)
= Simplify logic before you design any part of the circuit

62
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NOR Circuit Design Walkthrough

» First, start with the Boolean Expression
" NOR is NOT-OR, which is
~(A | B) <- statement for when outputis 1 (True)

+ Since | like to start with PDN, find the cases when output
is FALSE, then simplify
" This can be done by negating the original expression
= ~~(A | B) <-statement for when output is O (False)
= (A | B) <-simplified by identity property

CIS 2400, Fall 2024
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NOR Circuit Design Walkthrough

+» With the expression for the PDN (when output is 0),
translate it to a circuit diagram for the PDN
" OR’s become transistors in parallel
= AND’s become transistors in series

A

(A | B) becomes —

T Output
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NOR Circuit PUN (Strategy 1)

+» With the simplified expression for PDN, negate it to get

the expression for PUN 1y t1is example, initial PUN expression is
= (A | B) becomes ~(A | B) the same as the original expression. This

= Simplify 1S not always the case

- ~(A | B)
- (A &~B) // by De Morgan’s Law

» From here, we can convert (~A & ~B) into a PUN
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NOR Circuit PUN (Strategy 1)

% From here, we can convert (YA & ~B) into a PUN
® OR’s become transistors in parallel
= AND’s become transistors in series

= pMOS transistors have an implicit “NOT”
« pMOS only turns on when input is low (0)

Qutput
The reason for the circle in pMOS:

Circle represents a “Not” or negation

CIS 2400, Fall 2024
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NOR Circuit PUN (Strategy 2)

» Alternative way to get the PUN from the PDN
= Series relations in PDN become Parallel relations in PUN
= Parallel relations in PDN become Series relations in PUN
" nMOS transistors become pMOS transistors

This is just a “short-cut” for applyivg
A De Worgan’s to the PPN

B

Qutput #

T —

T

Qutput

67



University of Pennsylvania

Completed NOR Circuit

LO7: CMOS Transistor Circuits

Output
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Finally, all you have to do is combine the PDN and PUN

" To be safe, check your work and create a truth table

A |B |Output
0 |0 |1
0|1 |0
1 (0 |0
1|1 |0
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