
CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Basic C Memory Model
Introduction to Computer Systems, Fall 2024

Instructors: Joel Ramirez Travis McGaha

Head TAs: Adam Gorka Daniel Gearhardt

Ash Fujiyama Emily Shen

TAs:
Ahmed Abdellah Ethan Weisberg Maya Huizar

Angie Cao Garrett O'Malley Kirsch Meghana Vasireddy

August Fu Hassan Rizwan Perrie Quek

Caroline Begg Iain Li Sidharth Roy

Cathy Cao Jerry Wang Sydnie-Shea Cohen

Claire Lu Juan Lopez Vivi Li

Eric Sungwon Lee Keith Mathe Yousef AlRabiah

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Poll: how are you?

❖ How are you? Any Questions from last lecture?

2

pollev.com/cis2400

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Upcoming Due Dates TODO

❖ HW00 (Approx): Due Friday (Sept 6) @ 11:59 pm

▪ Remember, we are super lenient with late days…

▪ Don’t stress out already pls

▪ Take care of yourself.

❖ In general, there will be a lecture check in due before
Lecture on Tuesdays!

▪ Next one should be out sometime tomorrow morning

3

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Lecture Outline

❖ Review

▪ Bits, Bytes, Operators, and more.

❖ Revisiting: Char * & Char[]

❖ Global Memory

❖ The Stack

❖ The Heap

▪ malloc() & free()

❖ Structs & C Data Structures

4

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Base 2

5

1 1 1 1 1 1 1 1
20212223242526

❖ The I’th bit represents 2i

❖ We can use the prefix ‘0b’ to denote base 2. (e.g. 0b1101)

27

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Binary

6

1 1 1 1 1 1 1 1
2021222324252627

The Least Significant Bit
(LSB)

The Most Significant Bit
 (MSB)

Note: This is One Byte (8 Bits).

The size of a char!

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Unsigned Integers

7

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Overflow

If you exceed the maximum value of your bit representation, you
wrap around or overflow back to the smallest bit representation.

▪ 0b1111 + 0b1 = 0b0000

If you go below the minimum value of your bit representation, you
wrap around or overflow back to the largest bit representation.

▪ 0b0000 - 0b1 = 0b1111

8

Here we’re assuming we only have 4 bits to work with!

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Two’s Compliment

9

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Two’s Compliment

10

❖ Here, we represent a positive number as itself, and its
negative equivalent as the two’s complement of itself.

❖ The two’s complement of a number is the binary digits
inverted, plus 1.

❖ A nice consequence is all negative numbers have a 1 in
the Most Significant Bit.

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Size Does Matter When Talking About Range

11

Type
Size

(Bytes)
Minimum Maximum

char 1 -128 127

unsigned char 1 0 255

short 2 -32768 32767

unsigned short 2 0 65535

int 4 -2147483648 2147483647

unsigned int 4 0 4294967295

long 8 -9223372036854775808 9223372036854775807

unsigned long 8 0 18446744073709551615

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Bit Operator: & (and)

12

1 & 1 = 1
1 & 0 = 0
0 & 1 = 0
0 & 0 = 0

Only if both bits are one,
will it stay one!

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Bit Operator: | (or)

13

1 | 1 = 1
1 | 0 = 1
0 | 1 = 1
0 | 0 = 0

If either bits are one,
will evaluate to one

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Bit Operator: ^ (XOR)

14

1 ^ 1 = 0
1 ^ 0 = 1
0 ^ 1 = 1
0 ^ 0 = 0

ONLY IF a singular bit is one,
will evaluate to one

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

More Bit Operators: << (left shift)

15

0b 0 0 1 0 1 << 1

0b 0 1 0 1 0

This operation shifts the bits n many times to the left.

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

More Bit Operators: >> (right shift)

16

0b 0 0 1 0 1 >> 1

0b 0 0 0 1 0
This operation shifts the bits n many times to the right.

Bits are “truncated” if they are right shifted by too much.

What happened

to the LSB?

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

REMEMBER THIS

17

&& IS NOT &

|| IS NOT |

! IS NOT ~

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Clarification on ~

18

❖ This “flips”, “negates”, or creates the compliment of a binary
number.

❖ These terms are used sometimes interchangeably.

~ 0b 1 1 0 1 0 1

0b 0 0 1 0 1 0

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Poll: Does this work?

❖ What will be the resulting value of num be in binary?

19

#include <stdio.h>

#include <stdlib.h>

int main() {

 unsigned char num = 0xff;

 num = num & 0xf0;

 num = num ^ 0x01;

 num = ~num;

 ...

}

pollev.com/cis2400

A. 0b11110001

B. 0b10110001

C. 0b11110000

D. 0b00001110

E. What is binary?

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Poll: Does this work?

❖ What will be the resulting value of num be in binary?

20

#include <stdio.h>

#include <stdlib.h>

int main() {

 unsigned char num = 0xff;

 num = num & 0xf0;

 num = num ^ 0x01;

 num = ~num;

 ...

}

pollev.com/cis2400

A. 0b11110001

B. 0b10110001

C. 0b11110000

D. 0b00001110

E. What is binary?

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Goals for This Lecture:

❖ C Strings from the Perspective of Memory

❖ Char *s vs Char []’s

❖ To understand where data is stored over the lifetime of a
C program

❖ Three types of data allocation:

▪ Static (e.g. Globals)

▪ Automatic (e.g. Local Variables & the stack)

▪ Dynamic (e.g. stored on the Heap)

• Covered by Travis next week!

21

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Lecture Outline

❖ Review

▪ Bits, Bytes, Operators, and more.

❖ Revisiting: Char * & Char[]

❖ Global Memory

❖ The Stack

❖ The Heap

▪ malloc() & free()

❖ Structs & C Data Structures

22

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Revisiting: Char * & Char[]

❖ C doesn’t know what a “string” is.

❖ A string in C is simply an array of characters with a special
ending value "\0"

23

"Miso"
index 0 1 2 3 4

char 'M' 'i' 's' 'o' '\0'}
This is what the string might

look like directly in memory.

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Revisiting: Char * & Char[]

char str[5];

str[0] = 'M'

str[1] = 'i'

str[2] = 's'

str[3] = 'o'

str[4] = '\0'

24

index 0 1 2 3 4

char 'M' 'i' 's' 'o' '\0'

And we’re done right?

We need the Null Terminator

❖ Here we have an array of 5 chars, where each char is a single
byte

▪ In total, 5 bytes!

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Revisiting: Char * & Char[]

25

str[0] = 'M'

▪ This literally inserts the ascii value of 'M' (0x4D) into str[0]

index 0 1 2 3 4

value 0x4D 0x69 0x73 0x6F 0x00

index 0 1 2 3 4

char 'M' 'i' 's' 'o' '\0'
Human readable;

great for teaching!

Under the hood it

might actually look like

this…..

Reminder: Two Hex digits are one byte. 0xff = 0b11111111

ascii
values

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Revisiting: Char * & Char[]

26

❖Each character takes up one byte of memory

❖ In C, things are byte addressable meaning that you can grab
things "one byte at a time".

❖ Which should make sense if chars are one byte…

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Lecture Outline

❖ Review

▪ Bits, Bytes, Operators, and more.

❖ Revisiting: Char * & Char[]

❖ Strings as Arrays of Memory

❖ Global Memory

❖ The Stack

❖ The Heap

▪ malloc() & free()

❖ Structs & C Data Structures

27

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Strings as Arrays of Memory

char str[5];

str[0] = "M"

str[1] = "i”

str[2] = "s"

str[3] = "o”

str[4] = "\0"

28

❖A more realistic view of arrays.

Address 0xffff00 0xffff01 0xffff02 0xffff03 0xffff04

char 'M' 'i' 's' 'o' '\0'

These are addresses. They show where
the characters in this array are stored in

memory.

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Strings as Arrays of Memory

29

❖Notice that these characters are literally next to each other.

Address 0xffff00 0xffff01 0xffff02 0xffff03 0xffff04

char 'M' 'i' 's' 'o' '\0'

These addresses go from 0xffff0 to 0xffff04.

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Strings as Arrays of Memory

char str[5] = “Miso”;

char *ptr = str;

30

Address 0xffff00 0xffff01 0xffff02 0xffff03 0xffff04

Value 'M' 'i' 's' 'o' '\0'

ptr

0xffff00
The value of the pointer is the address of

the first character in the array

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Strings as Arrays of Memory

char str[5] = “Miso”;

char *ptr = str;

ptr = &str[1]

31

Address 0xffff00 0xffff01 0xffff02 0xffff03 0xffff04

Value 'M' 'i' 's' 'o' '\0'

0xffff01

ptr

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Strings as Arrays of Memory

char str[5] = “Miso”;

char *ptr = str;

ptr = &str[2]

32

Address 0xffff00 0xffff01 0xffff02 0xffff03 0xffff04

Value 'M' 'i' 's' 'o' '\0'

0xffff02

ptr

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Strings as Arrays of Memory

char str[5] = “Miso”;

char *ptr = str;

ptr = &str[2]

char **ptr_ptr = &ptr;

34

Address 0xffff00 0xffff01 0xffff02 0xffff03 0xffff04

Value 'M' 'i' 's' 'o' '\0'

Address 0xffff0c

0xffff02

Address 0xffff14

0xffff0c

ptr_ptrptr

Typically, as you declare

variables, they get initialized

right next to each other.

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Strings as Arrays of Memory

35

Address 0xffff00 0xffff01 0xffff02 0xffff03 0xffff04

Value 'M' 'i' 's' 'o' '\0'

Address 0xffff0c

0xffff02

Address 0xffff14

0xffff0c

ptr

ptr_ptr

❖& Operator grabs the address of a
variable

❖* Operator grabs the value @ the
address.

❖A pointer is a variable that holds the
address of another variable

❖We have to be explicit about its’ type

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Strings as Arrays of Memory

36

Address 0xffff00 0xffff01 0xffff02 0xffff03 0xffff04

Value 'M' 'i' 's' 'o' '\0'

Address 0xffff0c

0xffff02

Address 0xffff14

0xffff0c

ptr

ptr_ptr

What is the difference/distance between
the address 0xffff0c and 0xffff14?

Its 0x8!

ON 64Bit Computers, Pointers are

ALWAYS 8 Bytes.

Doesn’t matter if they’re char * or char

** or char **********

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

C Strings as Arguments

❖ As a parameter, it is always passed as a char *.

❖ C passes the location or address of the first character
rather than a copy of the whole array.

37

int doSomethingForMe(char *str) {
 str[2] = 'l'; // modifies original string!
 printf("%s\n", str); // prints milo
}

char ourString[5];
... // e.g. this string is “Miso”
doSomethingForMe(myString);
printf("%s\n", str); // prints milo

We can still use a
char * the same
way as a char[].

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Strings as Arrays of Memory

38

Address 0xffff00 0xffff01 0xffff02 0xffff03 0xffff04

Value 'M' 'i' 's' 'o' '\0'

Address 0xffff0c

0xffff02

Address 0xffff14

0xffff0c

ptr

ptr_ptr

char str[5] = “Miso”;

char *ptr = str;

ptr = &str[2]

char **ptr_ptr = &ptr;

(*ptr_ptr)[1] = 't'; //??

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Strings as Arrays of Memory

39

Address 0xffff00 0xffff01 0xffff02 0xffff03 0xffff04

Value 'M' 'i' 's' 't' '\0'

Address 0xffff0c

0xffff02

Address 0xffff14

0xffff0c

ptr

ptr_ptr

char str[5] = “Miso”;

char *ptr = str;

ptr = &str[2]

char **ptr_ptr = &ptr;

(*ptr_ptr)[1] = 't’; //??

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Strings as Arrays of Memory

40

Address 0xffff00 0xffff01 0xffff02 0xffff03 0xffff04

Value 'M' 'i' 's' 't' '\0'

Address 0xffff0c

0xffff02

Address 0xffff14

0xffff0c

ptr

ptr_ptr

(*ptr_ptr)[1] = 't’; //??

*ptr_ptr: This gets the value at the
address stored in ptr_ptr.

(addr)[1]: This accesses the value at an
address offset by one unit from addr.

The unit size is determined by the type

we are pointing to.

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Char * vs Char []

❖ char * is an 8-byte pointer

▪ it stores an address of a character

❖ char[] is an array of characters

▪ it stores the actual characters of a string

❖ char[] is automatically passed as a char *

▪ (pointer to its first character)

41

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Lecture Outline

❖ Review

▪ Bits, Bytes, Operators, and more.

❖ Revisiting: Char * & Char[]

❖ Strings as Arrays of Memory

❖ C Memory

▪ Memory Diagram

▪ Global Memory

▪ The Stack

42

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Memory Diagram of C Program

❖ char * is an 8-byte pointer

▪ it stores an address of a character

❖ char[] is an array of characters

▪ it stores the actual characters in a
string

43

Stack

Heap

Data Segment
(Uninitialized)

(Initialized)

Text/Code Segment

char str[5] = "Miso";

char *ptr = "Ube";

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Memory Diagram of C Program

❖ Stack Memory

▪ Readable and Modifiable

❖ Text/Code Segment

▪ Readable Only

44

Stack

Heap

Data Segment
(Uninitialized)

(Initialized)

Text/Code Segment

char str[5] = "Miso";

char *ptr = "Ube";

Note, here the arrows are showing

you where the strings themselves

live. NOT THE VARIABLES

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Memory Diagram of C Program

45

Heap

Data Segment
(Uninitialized)

(Initialized)

char str[5] = "Miso";

char *ptr = "Ube";

Text/Code Segment

Stack
str "Miso”

ptr

"Ube"

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Memory Diagram of C Program

46

Addresses

Stack
Holds Local Variables

Function Calls

x7FFF

x7000

x6FFF

Heap
Dynamic Memory

(more on this next week!) 0x4000

Data Segment
Uninitialized Global Variables

x3FFF

x2000Initialized Global Variables

Text/Code
Segment

String Literals
Machine Code

x1FFF

x0000

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Memory Diagram of C Program

47

Addresses

Stack
Holds Local Variables

Function Calls

x7FFF

x7000

Heap
Dynamic Memory

(more on this next week!)
0x4000

The stack grows downwards as
you call more functions and

create more variables

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Memory Diagram of C Program

48

Stack
Holds Local Variables

Function Calls

Heap
Dynamic Memory

(more on this next week!)

As you begin to use up all
the stack space…

(e.g. with recursive calls…)

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Memory Diagram of C Program

49

Stack
Holds Local Variables

Function Calls

Heap
Dynamic Memory

(more on this next week!)

The stack can flow into
the heap…

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Memory Diagram of C Program

50

Or in other words…

stack overflow…

No more memory for
stack to grow. :/

Stack
Holds Local Variables

Function Calls

Heap
Dynamic Memory

(more on this next week!)

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Lecture Outline

❖ Review

▪ Bits, Bytes, Operators, and more.

❖ Revisiting: Char * & Char[]

❖ Strings as Arrays of Memory

❖ C Memory

▪ Memory Diagram

▪ Global Memory

▪ The Stack

51

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Global Variables in C

❖ Global variables exist outside of any function, can be
accessed from any function

❖ Exist throughout the entire lifespan of a program
52

#include <stdio.h>

#include <stdlib.h>

int x = 0;

void incr_globals() {

 x++;

}

int main() {

 printf("x: %d\n", x); // prints 0

 incr_globals();

 printf("x: %d\n", x); // prints 1

 return EXIT_SUCCESS;

}

Declaring a variable outside of
a function makes it “global”

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Global Variables in Memory

❖ Global variables can be stored at a
static (un-changing) address.

❖ Reading/writing to that variable just
involves going to that static memory
location.

❖ These variable are “allocated as soon
as the program is loaded. Program
exiting will “de-allocate” the variable.

53

int x

Addresses

Stack

x7FFF

x7000

x6FFF

Heap 0x4000

Data Segment
(Uninitialized)

x3FFF

x2000(Initialized)

Text/Code Segment

x1FFF

x0000

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Variables in Functions

❖ Variables declared outside of functions (global variables)
exist over the lifetime of the program

❖ What about variables in functions?

▪ Function parameters, local variables, return values etc.

▪ Exist only for the lifetime of an instance of execution of a function

▪ There may be multiple instances of a function at a time, needing
multiple (but separate) sets of variables (e.g. recursion)

▪ Where do these exist in memory?

54

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

The Stack

❖ Local variables are stored in a portion of memory called
the “Stack” sometimes called the “Call Stack”.

▪ Whenever a function is invoked, we “push” a “stack frame” for
that function onto the top of the stack.

▪ The stack frame contains important information about the
execution of the function and has space for every local variable

▪ When a function exits, its stack frame is “popped” and the local
variables are “deallocated”

55

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Stack Example 1:

56

#include <stdio.h>

#include <stdlib.h>

int sum(int n) {

 int sum = 0;

 for (int i = 0; i < n; i++) {

 sum += i;

 }

 return sum;

}

int main() {

 int sum = sum(3);

 printf("sum: %d\n", sum);

 return EXIT_SUCCESS;

}

Zooming in on the

bottom of the stack

Starts empty

Stack

Heap

Data Segment

Text/Code
Segment

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Stack Example 1:

57

#include <stdio.h>

#include <stdlib.h>

int sum(int n) {

 int sum = 0;

 for (int i = 0; i < n; i++) {

 sum += i;

 }

 return sum;

}

int main() {

 int sum = sum(3);

 printf("sum: %d\n", sum);

 return EXIT_SUCCESS;

}

int sum;

Stack frame for
main()

Stack frame for main is
created when CPU
starts executing it

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Stack Example 1:

58

#include <stdio.h>

#include <stdlib.h>

int sum(int n) {

 int sum = 0;

 for (int i = 0; i < n; i++) {

 sum += i;

 }

 return sum;

}

int main() {

 int sum = sum(3);

 printf("sum: %d\n", sum);

 return EXIT_SUCCESS;

}

int sum;
Stack frame for
main()

int n;

int sum;

int i; Stack frame for
sum()

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Stack Example 1:

59

#include <stdio.h>

#include <stdlib.h>

int sum(int n) {

 int sum = 0;

 for (int i = 0; i < n; i++) {

 sum += i;

 }

 return sum;

}

int main() {

 int sum = sum(3);

 printf("sum: %d\n", sum);

 return EXIT_SUCCESS;

}

int sum;
Stack frame for
main()

main()’s stack frame
is now top of the stack
and we keep executing
main()

sum()’s stack frame
goes away after
sum() returns.

????

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Stack Example 1:

60

#include <stdio.h>

#include <stdlib.h>

int sum(int n) {

 int sum = 0;

 for (int i = 0; i < n; i++) {

 sum += i;

 }

 return sum;

}

int main() {

 int sum = sum(3);

 printf("sum: %d\n", sum);

 return EXIT_SUCCESS;

}

int sum;
Stack frame for
main()

Stack frame for
printf()

????

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Stack Example 2:

61

int sum;
Stack frame for
main()

#include <stdio.h>

#include <stdlib.h>

int sum_recursive(int n) {

 if (n == 0) {

 return n;

 }

 return n + sum_recursive(n-1);

}

int main() {

 int sum = sum_recursive(3);

 printf("sum: %d\n", sum);

 return EXIT_SUCCESS;

}

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Stack Example 2:

62

int n;
Stack frame for
sum_recursive(3)

#include <stdio.h>

#include <stdlib.h>

int sum_recursive(int n) {

 if (n == 0) {

 return n;

 }

 return n + sum_recursive(n-1);

}

int main() {

 int sum = sum_recursive(3);

 printf("sum: %d\n", sum);

 return EXIT_SUCCESS;

}

int sum;
Stack frame for
main()

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Stack Example 2:

63

int n;
Stack frame for
sum_recursive(2)

#include <stdio.h>

#include <stdlib.h>

int sum_recursive(int n) {

 if (n == 0) {

 return n;

 }

 return n + sum_recursive(n-1);

}

int main() {

 int sum = sum_recursive(3);

 printf("sum: %d\n", sum);

 return EXIT_SUCCESS;

}

int n;
Stack frame for
sum_recursive(3)

int sum;
Stack frame for
main()

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Stack Example 2:

64

int n;
Stack frame for
sum_recursive(1)

#include <stdio.h>

#include <stdlib.h>

int sum_recursive(int n) {

 if (n == 0) {

 return n;

 }

 return n + sum_recursive(n-1);

}

int main() {

 int sum = sum_recursive(3);

 printf("sum: %d\n", sum);

 return EXIT_SUCCESS;

}

int n;
Stack frame for
sum_recursive(2)

int n;
Stack frame for
sum_recursive(3)

int sum;
Stack frame for
main()

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Stack Example 2:

65

int n;
Stack frame for
sum_recursive(0)

#include <stdio.h>

#include <stdlib.h>

int sum_recursive(int n) {

 if (n == 0) {

 return n;

 }

 return n + sum_recursive(n-1);

}

int main() {

 int sum = sum_recursive(3);

 printf("sum: %d\n", sum);

 return EXIT_SUCCESS;

}

int n;
Stack frame for
sum_recursive(1)

int n;
Stack frame for
sum_recursive(2)

int n;
Stack frame for
sum_recursive(3)

int sum;
Stack frame for
main()

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Stack Example 2:

66

#include <stdio.h>

#include <stdlib.h>

int sum_recursive(int n) {

 if (n == 0) {

 return n;

 }

 return n + sum_recursive(n-1);

}

int main() {

 int sum = sum_recursive(3);

 printf("sum: %d\n", sum);

 return EXIT_SUCCESS;

}

int n;
Stack frame for
sum_recursive(1)

int n;
Stack frame for
sum_recursive(2)

int n;
Stack frame for
sum_recursive(3)

int sum;
Stack frame for
main()

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Stack Example 2:

67

#include <stdio.h>

#include <stdlib.h>

int sum_recursive(int n) {

 if (n == 0) {

 return n;

 }

 return n + sum_recursive(n-1);

}

int main() {

 int sum = sum_recursive(3);

 printf("sum: %d\n", sum);

 return EXIT_SUCCESS;

}

int n;
Stack frame for
sum_recursive(2)

int n;
Stack frame for
sum_recursive(3)

int sum;
Stack frame for
main()

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Stack Example 2:

68

#include <stdio.h>

#include <stdlib.h>

int sum_recursive(int n) {

 if (n == 0) {

 return n;

 }

 return n + sum_recursive(n-1);

}

int main() {

 int sum = sum_recursive(3);

 printf("sum: %d\n", sum);

 return EXIT_SUCCESS;

}

int n;
Stack frame for
sum_recursive(3)

int sum;
Stack frame for
main()

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Stack Example 2:

69

#include <stdio.h>

#include <stdlib.h>

int sum_recursive(int n) {

 if (n == 0) {

 return n;

 }

 return n + sum_recursive(n-1);

}

int main() {

 int sum = sum_recursive(3);

 printf("sum: %d\n", sum);

 return EXIT_SUCCESS;

}

int sum;
Stack frame for
main()

????
Stack frame for
printf()

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Memory Allocation So Far

❖ So far, we have seen two kinds of memory allocation:

int counter = 0; // global var

int main() {

 counter++;

 printf("count = %d\n",counter);

 return 0;

}

int foo(int a) {

 int x = a + 1; // local var

 return x;

}

int main() {

 int y = foo(10); // local var

 printf("y = %d\n",y);

 return 0;

}▪ counter is statically-allocated

• Allocated when program is loaded

• Deallocated when program exits
▪ a, x, y are automatically-

allocated

• Allocated when function is called

• Deallocated when function returns

70

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Poll: Does this work?

❖ The following program compiles without errors. Does it
work as seemingly intended though?

71

#include <stdio.h>

#include <stdlib.h>

int* get_secret_nums() {

 int secret_nums[] = {2400, 3800, 4710};

 return secret_nums;

}

int main() {

 int* nums = get_secret_nums();

 printf("%d\n", nums[0]);

 return EXIT_SUCCESS;

}

pollev.com/cis2400

A. Yes

B. No

C. I’m not sure

D. Skibidi

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Poll: Does this work?

❖ The following program compiles without errors. Does it
work as seemingly intended though?

72

#include <stdio.h>

#include <stdlib.h>

int* get_secret_nums() {

 int secret_nums[] = {2400, 3800, 4710};

 return secret_nums;

}

int main() {

 int* nums = get_secret_nums();

 printf("%d\n", nums[0]);

 return EXIT_SUCCESS;

}

pollev.com/cis2400

Stack frame for
main()

int* nums;

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Poll: Does this work?

❖ The following program compiles without errors. Does it
work as seemingly intended though?

#include <stdio.h>

#include <stdlib.h>

int* get_secret_nums() {

 int secret_nums[] = {2400, 3800, 4710};

 return secret_nums;

}

int main() {

 int* nums = get_secret_nums();

 printf("%d\n", nums[0]);

 return EXIT_SUCCESS;

}

pollev.com/cis2400

int* nums; Stack frame for
main()

secret_nums
Stack frame for
get_secret

_nums()

2400 3800 4710

73

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Poll: Does this work?

❖ The following program compiles without errors. Does it
work as seemingly intended though?

#include <stdio.h>

#include <stdlib.h>

int* get_secret_nums() {

 int secret_nums[] = {2400, 3800, 4710};

 return secret_nums;

}

int main() {

 int* nums = get_secret_nums();

 printf("%d\n", nums[0]);

 return EXIT_SUCCESS;

}

pollev.com/cis2400

int* nums; Stack frame for
main()

Stack frame for
get_secret_

nums()is

gone…

74

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Stack frame for
printf()

Poll: Does this work?

❖ The following program compiles without errors. Does it
work as seemingly intended though?

#include <stdio.h>

#include <stdlib.h>

int* get_secret_nums() {

 int secret_nums[] = {2400, 3800, 4710};

 return secret_nums;

}

int main() {

 int* nums = get_secret_nums();

 printf("%d\n", nums[0]);

 return EXIT_SUCCESS;

}

pollev.com/cis2400

int* nums; Stack frame for
main()

75

????

B. No

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Stack frame for
printf()

Poll: Does this work?

❖ The following program compiles without errors. Does it
work as seemingly intended though?

#include <stdio.h>

#include <stdlib.h>

int* get_secret_nums() {

 int secret_nums[] = {2400, 3800, 4710};

 return secret_nums;

}

int main() {

 int* nums = get_secret_nums();

 printf("%d\n", nums[0]);

 return EXIT_SUCCESS;

}

pollev.com/cis2400

int* nums; Stack frame for
main()

76

????

When printf() is called we
overwrite the local vars created

by the get_secret_nums
function call.

Why?

B. No

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Lecture Take-aways

❖ char * is an 8-byte pointer

▪ it stores an address of a character

❖ char[] is an array of characters

▪ it stores the actual characters of a string

❖ A pointer is a variable that holds the address of another
variable

❖ Memory is Split into 4 Spaces
▪ Stack, Heap, Data Segment, Text/Code Segment

❖ Global variables can be stored at a static (un-changing)
address. (Data Segment)

❖ Local variables are stored in a portion of memory called the
“Stack”

77

CIS 2400, Fall 2024L03: The Basic C Memory ModelUniversity of Pennsylvania

Have a great weekend!

78

	Default Section
	Slide 1: Basic C Memory Model Introduction to Computer Systems, Fall 2024
	Slide 2: Poll: how are you?
	Slide 3: Upcoming Due Dates TODO
	Slide 4: Lecture Outline
	Slide 5: Base 2
	Slide 6: Binary
	Slide 7: Unsigned Integers
	Slide 8: Overflow
	Slide 9: Two’s Compliment
	Slide 10: Two’s Compliment
	Slide 11: Size Does Matter When Talking About Range
	Slide 12: Bit Operator: & (and)
	Slide 13: Bit Operator: | (or)
	Slide 14: Bit Operator: ^ (XOR)
	Slide 15: More Bit Operators: << (left shift)
	Slide 16: More Bit Operators: >> (right shift)
	Slide 17: REMEMBER THIS
	Slide 18: Clarification on ~
	Slide 19: Poll: Does this work?
	Slide 20: Poll: Does this work?
	Slide 21: Goals for This Lecture:
	Slide 22: Lecture Outline
	Slide 23: Revisiting: Char * & Char[]
	Slide 24: Revisiting: Char * & Char[]
	Slide 25: Revisiting: Char * & Char[]
	Slide 26: Revisiting: Char * & Char[]
	Slide 27: Lecture Outline
	Slide 28: Strings as Arrays of Memory
	Slide 29: Strings as Arrays of Memory
	Slide 30: Strings as Arrays of Memory
	Slide 31: Strings as Arrays of Memory
	Slide 32: Strings as Arrays of Memory
	Slide 34: Strings as Arrays of Memory
	Slide 35: Strings as Arrays of Memory
	Slide 36: Strings as Arrays of Memory
	Slide 37: C Strings as Arguments
	Slide 38: Strings as Arrays of Memory
	Slide 39: Strings as Arrays of Memory
	Slide 40: Strings as Arrays of Memory
	Slide 41: Char * vs Char []
	Slide 42: Lecture Outline
	Slide 43: Memory Diagram of C Program
	Slide 44: Memory Diagram of C Program
	Slide 45: Memory Diagram of C Program
	Slide 46: Memory Diagram of C Program
	Slide 47: Memory Diagram of C Program
	Slide 48: Memory Diagram of C Program
	Slide 49: Memory Diagram of C Program
	Slide 50: Memory Diagram of C Program
	Slide 51: Lecture Outline
	Slide 52: Global Variables in C
	Slide 53: Global Variables in Memory
	Slide 54: Variables in Functions
	Slide 55: The Stack
	Slide 56: Stack Example 1:
	Slide 57: Stack Example 1:
	Slide 58: Stack Example 1:
	Slide 59: Stack Example 1:
	Slide 60: Stack Example 1:
	Slide 61: Stack Example 2:
	Slide 62: Stack Example 2:
	Slide 63: Stack Example 2:
	Slide 64: Stack Example 2:
	Slide 65: Stack Example 2:
	Slide 66: Stack Example 2:
	Slide 67: Stack Example 2:
	Slide 68: Stack Example 2:
	Slide 69: Stack Example 2:
	Slide 70: Memory Allocation So Far
	Slide 71: Poll: Does this work?
	Slide 72: Poll: Does this work?
	Slide 73: Poll: Does this work?
	Slide 74: Poll: Does this work?
	Slide 75: Poll: Does this work?
	Slide 76: Poll: Does this work?
	Slide 77: Lecture Take-aways
	Slide 78: Have a great weekend!

