University of Pennsylvania LO2: Bits & Bytes CIS 2400, Fall 2024

Bits & Bytes

Introduction to Computer Systems, Fall 2024

Instructors: Joel Ramirez Travis McGaha

Head TAs: Adam Gorka Daniel Gearhardt
Ash Fujiyama Emily Shen

TAs:

Ahmed Abdellah Ethan Weisberg Maya Huizar

Angie Cao Garrett O'Malley Kirsch Meghana Vasireddy
August Fu Hassan Rizwan Perrie Quek
Caroline Begg lain Li Sidharth Roy

Cathy Cao Jerry Wang Sydnie-Shea Cohen
Claire Lu Juan Lopez Vivi Li

Eric Sungwon Lee Keith Mathe Yousef AlRabiah

University of Pennsylvania LO2: Bits & Bytes CIS 2400, Fall 2024

@ Poll Eve ryWhere pollev.com/cis2400

+» How are you? Any Questions?

University of Pennsylvania LO2: Bits & Bytes CIS 2400, Fall 2024

Lecture Outline

+ How do we count?

>

® Bases

>

+ Binary

"= Conversions

" Hexadecimal
+» Unsigned Numbers
+ Overflow

+ Signed Numbers
= Two’s Complement
" Two’s Complement Overflow

University of Pennsylvania LO2: Bits & Bytes CIS 2400, Fall 2024

Lecture Outline

+ How do we count?

>

® Bases

>

+ Binary

"= Conversions

" Hexadecimal
+» Unsigned Numbers
+ Overflow

+ Signed Numbers
= Two’s Complement
" Two’s Complement Overflow

LO2: Bits & Bytes CIS 2400, Fall 2024

Base 10 (Decimal Numbers)

+» Humans typically process numbers in base 10

59314

Digits 0-9 (O to base-1)

University of Pennsylvania LO2: Bits & Bytes CIS 2400, Fall 2024

Base 10 (Decimal Numbers)

+» Humans typically process numbers in base 10

> 934

1 100

LO2: Bits & Bytes CIS 2400, Fall 2024

Base 10 (Decimal Numbers)

+» Humans typically process numbers in base 10

5934

10%:

University of Pennsylvania LO2: Bits & Bytes CIS 2400, Fall 2024

Base 2

Each of these is a bit!
2% 3 2 1 0

Digits 0-1 (O to base-1)

University of Pennsylvania LO2: Bits & Bytes CIS 2400, Fall 2024

Base 2

1011

23 22 2t 20

University of Pennsylvania LO2: Bits & Bytes CIS 2400, Fall 2024

Base 2

Most significant bit (MSB) Least significant bit (LSB)

e
1011

eights fours twos ones
1%23 + 0%22+ 1%21 + 1%20=11 10

1*8+0*4 +1*2 +1*1 =11 | .19

Note: this is ouly an example with 4 bitslll

10

University of Pennsylvania LO2: Bits & Bytes CIS 2400, Fall 2024

1111111

¢ The I'th bit represents 2

** We can also use the prefix ‘Ob’ to denote base 2. (e.g. 0b1101)

11

University of Pennsylvania LO2: Bits & Bytes CIS 2400, Fall 2024

Practice: Base 2 to Base 10

«» What is 0b10110 in base 107

12

University of Pennsylvania LO2: Bits & Bytes CIS 2400, Fall 2024

0 Poll Eve ryWhere pollev.com/cis2400

«» What is 0b10110 in base 107

22

16

S o ® »

38

m

Tbh, I’'m not sure.

13

University of Pennsylvania LO2: Bits & Bytes CIS 2400, Fall 2024

@ Poll Eve ryWhere pollev.com/cis2400

«» What is 0b10110 in base 107

0b101
A.
B. 22
(1*29)+(0*23)+(1*2%)+(1*21)+(0*29
C. 16 16 + 0 + 4 + 2 + 0
D. 38
16 + 4 + 2
E. Tbh, I’'m not sure.

22

14

CIS 2400, Fall 2024

University of Pennsylvania LO2: Bits & Bytes

Lecture Outline

+ How do we count?

= Bases

>

L)

>

» Binary

® Conversions

" Hexadecimal
+» Unsigned Numbers
+» Overflow

+ Signed Numbers
= Two’s Complement
" Two’s Complement Overflow

15

University of Pennsylvania

LO2: Bits & Bytes

From Decimals to Binary

+» Algorithm 1:

= Find the largest power of 2 <= the num

= Subtract this largest power of 2 from the num
= Place a'l'in the bit position corresponding to this power of 2

= Repeat until numberis 0

+» Example: 104
" 104-64=40
" 40-32=8
= 8-8=0
= 104 =0b1101000

64 is 2°, so bit6isa ‘1’
32is2> sobit5isa‘l’
8is23 sobit3isa ‘1

CIS 2400, Fall 2024

O 00 N O U1 b W N O|S

[EEY
o

128
256
512
1024

16

University of Pennsylvania

LO2: Bits & Bytes CIS 2400, Fall 2024

From Decimals to Binary: Division

+» Algorithm 2:

= Divide by two —remainder will be the next smallest bit

= Keep dividing until answeris 0

» Example: 104

104 /2=52r0
52/2=26r0
26/2=13r0
13/2=6r1
6/2=3r0
3/2=1r1
1/2=0r1

104 =0b1101000

bitOisO
bit1lisO
bit2is0
bit3is1
bit4is0
bit5is 1
bit6is 1

Note: think about what i+
means to divide a binary vamber
by two.

17

University of Pennsylvania LO2: Bits & Bytes CIS 2400, Fall 2024

@ Poll Eve ryWhere pollev.com/cis2400

+» Whatis 99 in binary?

O0b110111

0b1011111

S o ® »

0b1100011

m

4
Tbh, I'm not sure 128

256
512
1024

O 00 N O 1 Ao W N +» OS>
-
(@)}

[ERY
o

18

University of Pennsylvania LO2: Bits & Bytes CIS 2400, Fall 2024

@ Poll Eve ryWhere pollev.com/cis2400

+» Whatis 99 in binary?

99 — 64 = 35, bit 6 is 1
35-32=3, bit5is 1
0b110111 3-2=1,bitlis1

0b1011111 1-1=0, bitOis1

of o ® »

0b1100011

m

4
Tbh, I'm not sure 128

256
512
1024

O 00 N O 1 Ao W N +» OS>
-
(@)}

[ERY
o

19

University of Pennsylvania LO2: Bits & Bytes CIS 2400, Fall 2024

Byte Values

+» What is the minimum and maximum base 10 value a single
byte (8 bits) can store?

minimum =0 maximum = 255
2%: /7 6 5 4 3 21 O

e Strategy 1: 1%27 + 1%206+ 1*2° + 1*24 + 1*23+ 1*22+ 1*21 + 1*20=255
 Strategy 2: 28— 1 =255

20

Multiplying and Dividing by Bases

1450 x 10 = 14500
0b1100 x 2 = 0b11000

Key Idea: inserting 0 at the end multiplies by the bases

1450 / 10 = 145
0b1100 /2 =0b0110

Key Idea: removing 0 at the end divides by the base!

University of Pennsylvania LO2: Bits & Bytes CIS 2400, Fall 2024

Hexadecimal

+» When working with bits, we can have large numbers with up to
64 bits.

111111111111 111111111111 11

Umm, let’s not....

22

LO2: Bits & Bytes CIS 2400, Fall 2024

Hexadecimal

+» When working with bits, we can have large numbers with up to
64 bits.

» Instead, we’ll represent bits in base-16 instead; this is called
hexadecimal.

0110 1010 0011

0-15 0-15 0-15

Every 4 bits is a base16 digit!

23

University of Pennsylvania LO2: Bits & Bytes CIS 2400, Fall 2024

Hexadecimal

+ Hexadecimal is base-16, so we need digits for 1-15.

0123456789abcdef

10 11 12 13 14 15

Quick Pneumonic:
0xf, means the bits are full and there are four: 0b1111 == Oxf

24

University of Pennsylvania LO2: Bits & Bytes CIS 2400, Fall 2024

Hexadecimal

+» We can distinguish hexadecimal numbers by prefixing them
with 0X

1523 Base-10: Human-readable,

but cannot easily interpret on/off bits

@bl@lllll@@ll Base-2: Yes, computers use this,

but not human-readable

Base-16: Easy to convert to Base-2,

@X 5 F 3 More “portable” as a human-readable
format

(fun fact: a half-byte is called a nibble)

25

University of Pennsylvania LO2: Bits & Bytes CIS 2400, Fall 2024

@ Poll Everywhere pollev.com/cis2400

< Whatis 0b110101110100 in hex?

0 0000 0x0
1 0001 Ox1
A. 2 0010 Ox2
3 0011 0x3
B. OXGBA 4 0100 Ox4
5 0101 0x5
C. 0x45D 6 0110 0x6
7 0111 Ox7
D. Ox2EB 8 1000 0x8
9 1001 0x9
E. Tbh, I’'m not sure 10 1010 OXA
11 1011 OxB
12 1100 OxC
13 1101 OxD
14 1110 OxE
15 1111 OxF

26

University of Pennsylvania LO2: Bits & Bytes CIS 2400, Fall 2024

@ Poll Everywhere pollev.com/cis2400

< Whatis 0b110101110100 in hex?

0 0000 0x0
0b110101110100 : 001 0a

A. 0t 2 0010 Ox2
/ \ 3 0011 0x3

B. Ox6BA l 4 0100 Ox4
OxD Ox7 Ox4 5 0101 0X5

C. 0x45D 6 0110 0x6
7 0111 Ox7

D. Ox2EB 8 1000 0x8
9 1001 0x9

E. Tbh, I’'m not sure 10 1010 OXA
11 1011 OxB

12 1100 OxC

13 1101 OxD

14 1110 OXE

15 1111 OXF

27

University of Pennsylvania LO2: Bits & Bytes CIS 2400, Fall 2024

Hex Spelling (Hexspeak)

L)

>

Ox8BADF00D

= “ate bad food”

- Used by Apple in iOS crash reports, when an application takes too
long to launch, terminate, or respond to system event

+ OxDEADBEEf

- Originally used to mark areas of memory that had not yet been
initialized

+ OxDEADFAll
= “dead fall”

Used by Apple in iOS crash reports, when the user force quits an
application

+ O0x0000CACA

| "Caca n

L0

’0

>

’0

- Just for fun 28

CIS 2400, Fall 2024

LO2: Bits & Bytes

University of Pennsylvania

Encoding

+» We can represent more than just numbers with bits

" We just need an agreed upon encoding

» Decimal Numbers
"= 0 -0x00,1—->0x01, ..,240 - OxFO ..

» Characters
= A—>0x41,B—-> 0x42,C - 0x43, ..

» Colors
= [l > ox281€r2,] > 0x990000

29

University of Pennsylvania LO2: Bits & Bytes CIS 2400, Fall 2024

The Meaning of Bits

A seqguence of bits can have many meanings!

Consider the hex sequence Ox4E6F21
Common interpretations include:
The decimal number 5140257
The characters “No!”

The background color of this slide
The real number 7.203034 x10-39

A series of bits can also be code!
Eg. 0x94000005 means bl 0x100003f90 <_printf.....>

It is up to the program/programmer to decide how
to interpret the sequence of bits

University of Pennsylvania LO2: Bits & Bytes CIS 2400, Fall 2024

ASCII

+» We can encode binary values to represent characters

ASCII TABLE

Decimal Hex Char Decimal Hex Char [Decimal Hex Char |Decimal Hex Char
0 0 [NULL] 32 20 [SPACE] | 64 40 @ 96 60 >
1 1 [START OF HEADING] 33 21 ! 65 a1 A 97 61 a
2 2 [START OF TEXT] 34 22 " 66 a2 B Y 62 b
3 3 [END OF TEXT] 35 23 # 67 43 C 99 63 c
4 4 [END OF TRANSMISSION] | 36 24 s 68 a4 D 100 64 d
5 5 [ENQUIRY] 37 25 % 69 45 E 101 65 e
6 6 [ACKNOWLEDGE] 38 26 & 70 a6 F 102 66 f
7 7 [BELL] 39 27 ' 71 47 G 103 67 g
8 8 [BACKSPACE] 40 28 (72 48 H 104 68 h
9 9 [HORIZONTAL TAB] 41 29) 73 49 I 105 69 i
10 A [LINE FEED] 42 2A * 74 4A] 106 BA j
11 B [VERTICAL TAB] 43 2B + 75 4B K 107 6B Kk
12 C [FORM FEED] 44 2C , 76 aC L 108 6C 1
13 D [CARRIAGE RETURN] 45 2D - 77 4D M 109 60 m
14 E [SHIFT OUT] 46 2E . 78 4E N 110 6E n
15 F [SHIFT IN] 47 2F / 79 aF o 111 6F o
16 10 [DATA LINK ESCAPE] 48 30 0 80 50 P 112 70 p
17 11 [DEVICE CONTROL 1] 49 31 1 81 51 Q 113 71 q
18 12 [DEVICE CONTROL 2] 50 32 2 82 52 R 114 72 r
19 13 [DEVICE CONTROL 3] 51 33 3 83 53 s 115 73 s
20 14 [DEVICE CONTROL 4] 52 34 a 84 54 T 116 74 t
21 15 [NEGATIVE ACKNOWLEDGE] | 53 35 5 85 55 U 117 75 u
22 16 [SYNCHRONOUS IDLE] 54 36 & 86 56 v 118 76 v
23 17 [ENG OF TRANS, BLOCK] 55 37 7 87 57 w 119 77 w
24 18 [CANCEL] 56 38 8 88 58 X 120 78 X
25 19 [END OF MEDIUM] 57 39 9 89 59 Y 121 79 vy
26 1A [SUBSTITUTE] 58 3A : 90 5A z 122 7A 2
27 1B [ESCAPE] 59 3B ; 91 5B [123 7B {
28 1C [FILE SEPARATOR] 60 3C < 92 5C \ 124 7C |
29 1D [GROUP SEPARATOR] 61 3D = 93 50 1 125 D}
30 1E (RECORD SEPARATOR] 62 3E > 94 SE ~ 126 7E ~
31 1F [UNIT SEPARATOR] 63 3F ? 95 5F ~ 127 7F [DEL]

31

University of Pennsylvania LO2: Bits & Bytes CIS 2400, Fall 2024

ASCII Design

+ ASCII:
American Standard Code for Information Interchange

+» Designed to communicate American letters, numbers, and
some control signals efficiently

= Used only 7 bits to minimize number of bits that need to be
communicated

= Other languages not considered
32

University of Pennsylvania LO2: Bits & Bytes CIS 2400, Fall 2024

Unicode

» Unicode Standard UTF-8 is an alternate text encoding
= Uses between 8 and 32 bits for each “character”
® Characters include more than just English

" Characters include emojis G@l%

» Unicode table is a lot longer:
https://unicode-table.com/en/

33

https://unicode-table.com/en/

CIS 2400, Fall 2024

University of Pennsylvania LO2: Bits & Bytes

Lecture Outline

+ How do we count?

= Bases

>

L)

>

» Binary

"= Conversions

" Hexadecimal
+» Unsigned Numbers
% Overflow

+ Signed Numbers
= Two’s Complement
" Two’s Complement Overflow

34

University of Pennsylvania LO2: Bits & Bytes CIS 2400, Fall 2024

Unsigned Integers

+ An unsigned integer is O or a positive integer (no negatives).
+» Converting between decimal and binary, no difference!
+» Examples:

0b0001 =1
O0b0101 = 5
Obl1011 = 11

Ob1111 = 15

% The range of an unsigned numberis0 - 2¥-1

= where wis the number of bits.
= E.g.a32-bit integer can represent O to 232 -1 (4,294,967,295).

35

CIS 2400, Fall 2024

University of Pennsylvania LO2: Bits & Bytes

Lecture Outline

+ How do we count?

= Bases

>

L)

>

» Binary

"= Conversions

" Hexadecimal
+» Unsigned Numbers
% Overflow

+ Signed Numbers
= Two’s Complement
" Two’s Complement Overflow

36

University of Pennsylvania LO2: Bits & Bytes CIS 2400, Fall 2024

Unsigned Integers

unsigned integer 0100

representation

0101

37

University of Pennsylvania LO2: Bits & Bytes CIS 2400, Fall 2024

Overflow

If you exceed the maximum value of your bit representation, you
wrap around or overflow back to the smallest bit representation.

" 0b1111 +0b1 =0b0000

If you go below the minimum value of your bit representation, you
wrap around or overflow back to the largest bit representation.

= 0b0000-0bl=0b1111

Here we're assuming we only nave 4 bits +o work with!

38

CIS 2400, Fall 2024

University of Pennsylvania LO2: Bits & Bytes

Lecture Outline

+ How do we count?

= Bases

>

L)

>

» Binary

"= Conversions

" Hexadecimal
+» Unsigned Numbers
+ Overflow

+» Signed Numbers
" Two’s Complement
" Two’s Complement Overflow

39

University of Pennsylvania LO2: Bits & Bytes CIS 2400, Fall 2024

Signed Numbers: Where Are the Negatives?

+ Problem: How can we represent negative and positive
numbers in binary?

40

University of Pennsylvania LO2: Bits & Bytes CIS 2400, Fall 2024

Signed Numbers: Where Are the Negatives?

+ Problem: How can we represent negative and positive
numbers in binary?

+ ldeally, addition would work just like it usually does.

10 +-10 =0...

41

University of Pennsylvania LO2: Bits & Bytes CIS 2400, Fall 2024

Signed Numbers

Ob O 1 O 1 (5 in decimal)
+ Ob ? ? ? ? (should be -5 in decimal)

Ob00O0O

42

University of Pennsylvania LO2: Bits & Bytes CIS 2400, Fall 2024

Signed Numbers

Ob O 1 O 1 (5 in decimal)
+ 001010

Ob1111 w»ee
)

43

University of Pennsylvania LO2: Bits & Bytes CIS 2400, Fall 2024

Signed Numbers

Ob1111
+ Ob ? ? ? ? what do we need +o add

to make 1+ 07

44

University of Pennsylvania LO2: Bits & Bytes CIS 2400, Fall 2024

Signed Numbers
Remember:

Ob1111
+0b0001 f
0b0 00O

45

University of Pennsylvania LO2: Bits & Bytes CIS 2400, Fall 2024

Signed Numbers

Ob0 1071 ¢
+0b1011
Ob00O0O

46

University of Pennsylvania LO2: Bits & Bytes CIS 2400, Fall 2024

Signed Numbers

And we’re done!

0b0101
Ob1011

Walt...isw't this also 117

)

o
on U

47

LO2: Bits & Bytes CIS 2400, Fall 2024

Signed Numbers

The negative number is the positive number inverted, plus one!

A binary namber plus Add 1 +o this to carry over
I+s inverse is all 1s. all1s and get 0!

0b0101 Ob1111
+ 001010 + 0b0001

Ob1111 0b0000

48

LO2: Bits & Bytes CIS 2400, Fall 2024

Signed Numbers

The negative number is the positive number inverted, plus one!

A binary namber plus Add 1 +o this to carry over
I+s inverse is all 1s. all1s and get 0!

0b0101 Ob1111
+ 001010 + 0b0001

Ob1111 0b0000

49

University of Pennsylvania LO2: Bits & Bytes CIS 2400, Fall 2024

Two’s Compliment

0000

1111 0001

1110 0010

1101 0011

4-bit

two's complement
signed integer

representation

1100 0100

50

University of Pennsylvania LO2: Bits & Bytes CIS 2400, Fall 2024

Two’s Compliment

» Here, we represent a positive number as itself, and its
negative equivalent as the two’s complement of itself.

+» The two’s complement of a number is the binary digits
inverted, plus 1.

+» A nice consequence is all negative numbers havea 1in
the Most Significant Bit.

% You can use this to go from positive to negative and
negative to positive.
" E.g.0b1111 -> (invert) Ob0O00O0 -> (plus 1) 0b0001
" From-1to 1.

51

University of Pennsylvania LO2: Bits & Bytes CIS 2400, Fall 2024

@ Poll Eve ryWhere pollev.com/cis2400

+» What is the Two’s Compliment of 0b100110117?

A. 15t Step: Invert Bits
B. 0b11100101 0001100100

C. 0b01100101 Jnd Step: Add one
D. 0b11111110 0b01100101

E. Tbh, I’'m not sure

52

University of Pennsylvania

LO2: Bits & Bytes

Size Determines Range

CIS 2400, Fall 2024

short

-32768

Size
T Minimum Maximum
:YTDGE (IBY"tGES;) inimu
char 1 -128 127
unsigned char]_ O 255

327677

unsigned short

int

-21477483648

65535

2147483647

unsigned int

long

0

-9223372036854775808

4294967295

9223372036854775807

unsigned long

18446744073709551615

53

University of Pennsylvania LO2: Bits & Bytes

We still have overflow issues...

v Fiora X
&) @FioraAeterna - Follow

248 days == 2”31 100ths of a second.

even in 2015, our airplanes have integer overflow bugs

'/ Ben Goldacre 2 @bengoldacre

If you leave your Boeing 787 switched on for 248 days the power shuts
off and you fall out of the sky. Epic bug.
theguardian.com/businessf2015/...

8:06 AM - May 1, 2015 ®

® 472 @ Reply I, Share

Read 36 replies

Gangnam Style overflows INT_MAX, forces
YouTube to go 64-bit

Psy's hit song has been watched an awful lot of times.

ARS STAFF - 12/3/2014, 5:32 PM

NG MSTYLE(Q‘&.’AEP') M/V

Go on, watch it.

CIS 2400, Fall 2024

54

University of Pennsylvania LO2: Bits & Bytes CIS 2400, Fall 2024

Signed vs Unsigned Types

+» By default, all standard types are signed.
" |nt, Char, Long, Double

% There are many ways to declare unsigned types.

~

x = —-2400; Note: the size of the type

X = 2400; and it’s “signess” determine
the range i+ can represent
//and you get the idea..

55

University of Pennsylvania LO2: Bits & Bytes CIS 2400, Fall 2024

Bit Representations

Consider the following code:

(#include <stdio.h>
#include <stdlib.h>

Let’s see what exactly is

int main(int argc, char* argv[]) { prkﬁed

//a is 97 in ascii
x = 'a';
printf ("x is 0x%x.\n", x);

X = —-X;
printf("x is 0x%x.\n", x):;
return EXIT SUCCESS;
& y
sign_example.c

56

University of Pennsylvania LO2: Bits & Bytes

CIS 2400, Fall 2024

Bit Representations

Consider the following code:

(#include <stdio.h>
#include <stdlib.h>

int main(int argc, char* argv|[])
//a is 97 in ascii
x = 'a';
printf ("x is 0x%x.\n", x);

X = —-X;
printf("x is 0x%x.\n", x):;
return EXIT SUCCESS;

!

{

sign_example.c

Let’s see what exactly is
printed...

In general:
“x is 0x61.”
“x is 0x9f.”

57

LO2: Bits & Bytes

Bit Operator: & (and)

1&71=1
1 &0
0 &1
0&0

|1
O O O

CIS 2400, Fall 2024

Only if both bits
are one, will it stay one!

58

Bit Operator: & (and)

O0b0101
&0b1101

O0b0101

University of Pennsylvania LO2: Bits & Bytes

Bit Operator: | (or)

111=1
110=1
0]1="1
010=0

CIS 2400, Fall 2024

If either bits are one,
will evaluate to one

60

Bit Operator: | (or)

0b0101
| 0b1101

Ob1101

LO2: Bits & Bytes

Bit Operator: " (xor)
127
170
0”1
070

[
-

[
O =

CIS 2400, Fall

ONLY IF ONE BIT is one,
will evaluate to one

2024

62

Bit Operator: N (xor)

Ob0111
AOb1101

Ob1010

University of Pennsylvania LO2: Bits & Bytes CIS 2400, Fall 2024

Bit Operators

Consider the following code:

(4include <stdio.h>) Whatischarzin binary?
#finclude <stdlib.h>
In general:
int main(int argc, char* argv[]) { 7 will be 0b11110000
x = 0Oxff;
y = 0xf0;
z = X & y; Ob11111111

printf ("The value of z is %x\n.", z); & 0b11110000

return EXIT_SUCCESS;
}

0b11110000

N\ J
bit_ops.c

64

CIS 2400, Fall 2024

University of Pennsylvania LO2: Bits & Bytes

Bit Operators

Consider the following code:

(#include <stdio.h>
#include <stdlib.h>

//a is 97 in ascii
x = 0xf0;
y = 0Oxfl;
z = x ® vy;

return EXIT_SUCCESS;
}

\.

int main(int argc, char* argv[]) {

printf ("The value of z is %$x\n.", z);

What is char z in binary?

In general:
Z will be 0b00000001

0b11110000
A 0b11110001

bit_ops.c

0b00000001

65

University of Pennsylvania

CIS NOT JAVA

DO NOT DO THIS

LO2: Bits & Bytes

(#include <stdio.h>
#include <stdlib.h>

int main(int argc,
ube = foo();

miso = fuh () ;
i1f (ube & miso)

char* argv[])

{

CIS 2400, Fall 2024

& IS NOT A
LOGICAL OPERATOR!

ITTISFOR
PITWISE OPERATIONSI

It will literally evaluate
to the bit value.

66

University of Pennsylvania LO2: Bits & Bytes CIS 2400, Fall 2024

More Bit Operators: ~ (not)

~0b0101
Ob1010

This operation negates the bits!

67

LO2: Bits & Bytes CIS 2400, Fall 2024

More Bit Operators: << (left shift)

Ob00101<<k1
Ob01010

This operation shifts the bits n many times to the left.

68

University of Pennsylvania LO2: Bits & Bytes CIS 2400, Fall 2024

More Bit Operators: >> (right shift)

Ob00101>>1

What happeved

0b00010-—
®

This operation shifts the bits n many times to the right.

69

University of Pennsylvania LO2: Bits & Bytes CIS 2400, Fall 2024

What about Logical (Boolean) Operators?

%+ C doesn’t have Booleans! (Technically...)

+ Traditionally, just use an int to represent 1 for true and O
for false.

&& Logical And || Logical Or ! Logical Not

ENEETY NS

T

m m - -
M M T -
m m - -
mm -4 T -
m -4 - -

=
.
:
.

70

LO2: Bits & Bytes CIS 2400, Fall 2024

What about Logical (Boolean) Operators?

&& Logical And 1if(X && Y)

|| Logical Or if(X |] Y)

| Logical Not 1f (!'X)

71

University of Pennsylvania LO2: Bits & Bytes CIS 2400, Fall 2024

@ Poll Everywhere pollev.com/cis2400

Talk to your neighbor: what will be printed?

/%include <stdio.h>)

#include <stdlib.h> A.First print!

int main(int argc, char* argv([]) { B. Second print!
x = 0xf0; C.
y = 0x0f;

First print!

Second print!
if(x & vy){

printf ("First print!\n"); D.
} Second First
1f(x && y){ print!
printf ("Second print!\n"); print!

}
return EXIT SUCCESS;

_ bitop _v_logic.c Yy,

72

University of Pennsylvania LO2: Bits & Bytes CIS 2400, Fall 2024

Lecture Take-aways

+» We can represent anything in binary by using different
encodings!
" Numbers, colors, characters, emojis, code, etc..

+» Hexadecimal is more human friendly...
% Our encodings/data is limited due to finite bits

= Especially, when we are explicit about the types we use.
+» Unsigned Numbers are non-negative integers

+ Signed numbers use Two’s Compliment to represent
negative numbers

+ Bitwise operators allow you to manipulate individual bits.

73

	Default Section
	Slide 1: Bits & Bytes Introduction to Computer Systems, Fall 2024
	Slide 2: Poll: how are you?
	Slide 3: Lecture Outline
	Slide 4: Lecture Outline
	Slide 5: Base 10 (Decimal Numbers)
	Slide 6: Base 10 (Decimal Numbers)
	Slide 7: Base 10 (Decimal Numbers)
	Slide 8: Base 2
	Slide 9: Base 2
	Slide 10: Base 2
	Slide 11: Base 2
	Slide 12: Practice: Base 2 to Base 10
	Slide 13: One way to read() n bytes
	Slide 14: One way to read() n bytes
	Slide 15: Lecture Outline
	Slide 16: From Decimals to Binary
	Slide 17: From Decimals to Binary: Division
	Slide 18: One way to read() n bytes
	Slide 19: One way to read() n bytes
	Slide 20: Byte Values
	Slide 21: Multiplying and Dividing by Bases
	Slide 22: Hexadecimal
	Slide 23: Hexadecimal
	Slide 24: Hexadecimal
	Slide 25: Hexadecimal
	Slide 26: One way to read() n bytes
	Slide 27: One way to read() n bytes
	Slide 28: Hex Spelling (Hexspeak)
	Slide 29: Encoding
	Slide 30: The Meaning of Bits
	Slide 31: ASCII
	Slide 32: ASCII Design
	Slide 33: Unicode
	Slide 34: Lecture Outline
	Slide 35: Unsigned Integers
	Slide 36: Lecture Outline
	Slide 37: Unsigned Integers
	Slide 38: Overflow
	Slide 39: Lecture Outline
	Slide 40: Signed Numbers: Where Are the Negatives?
	Slide 41: Signed Numbers: Where Are the Negatives?
	Slide 42: Signed Numbers
	Slide 43: Signed Numbers
	Slide 44: Signed Numbers
	Slide 45: Signed Numbers
	Slide 46: Signed Numbers
	Slide 47: Signed Numbers
	Slide 48: Signed Numbers
	Slide 49: Signed Numbers
	Slide 50: Two’s Compliment
	Slide 51: Two’s Compliment
	Slide 52: One way to read() n bytes
	Slide 53: Size Determines Range
	Slide 54: We still have overflow issues…
	Slide 55: Signed vs Unsigned Types
	Slide 56: Bit Representations
	Slide 57: Bit Representations
	Slide 58: Bit Operator: & (and)
	Slide 59: Bit Operator: & (and)
	Slide 60: Bit Operator: | (or)
	Slide 61: Bit Operator: | (or)
	Slide 62: Bit Operator: ^ (xor)
	Slide 63: Bit Operator: ^ (xor)
	Slide 64: Bit Operators
	Slide 65: Bit Operators
	Slide 66: C IS NOT JAVA
	Slide 67: More Bit Operators: ~ (not)
	Slide 68: More Bit Operators: << (left shift)
	Slide 69: More Bit Operators: >> (right shift)
	Slide 70: What about Logical (Boolean) Operators?
	Slide 71: What about Logical (Boolean) Operators?
	Slide 72: Know the Difference
	Slide 73: Lecture Take-aways

