
CIS2400 Midterm Exam

Travis McGaha & Joel Ramirez
CIS2400

Fall 2024

This is a closed calculator/computer exam. You may consult one double-sided sheet of notes. No other
references are allowed.

If you provide an incorrect answer, any explanation about how you arrived at your solution may lead to
partial credit.

Full Name [print]:

PennID:

Exam Details & Instructions

• The exam consists of 5 questions (and a short bonus 6th question) worth 100 points total.

• You have 90 minutes to complete the exam.

• Two reference sheets will be provided. Do not write answers on them; they will not be graded.

• The exam is closed book. No textbooks, phones, laptops, wearable devices, or any other electronics are
allowed beyond the permitted notes.

• You may use one 8.5” x 11” double-sided sheet of paper for notes.

• Turn off and put away all electronic devices and noise-making items.

• Remove all hats, headphones, and watches.

Pledge: I neither cheated nor helped anyone else cheat on this exam. All answers are my own. Violating this
pledge may result in a failing grade.

Sign Here:

Advice

• There are 5 questions (with 11 parts total). Budget your time to complete all of them.

• Don’t worry if there is more space than you need for answers. Extra space is provided just in case.

• Take a deep breath and relax. A bad grade on this exam is not the end of the world. You can improve
your score with the Midterm ”Clobber” Policy (see the course syllabus).

Please initial or write your PennID on each page to ensure they can be matched if they become separated.

The last page is blank for extra space. If you use it, indicate clearly where your answer continues and include
your full name and PennID at the top.



Initial/PennID:

1 Memory Diagram and Structs [12 Points]

Consider the following struct definitions, which define a student struct containing the student’s ID number,
height, and enrolled classes:

typedef struct {
int feet;
int inches;

} height_t;

typedef struct student_st {
int id_number;

height_t height;

size_t num_classes;

int* classes;

} student;

student create_travis() {

student travis; // line 1

// line 2

travis.id_number = 2030; // line 3

// line 4

travis.height.feet = 5; // line 5

travis.height.inches = 11; // line 6

// line 7

travis.num_classes = 2; // line 8

int course_nums[] = {2400, 2620}; // line 9

travis.classes = course_nums; // line 10

// line 11

return travis; // line 12

}

If we had a main function that called create travis() and printed the result:

int main() {
student travis = create_travis();

// various print statements would go here

}

We might expect the following output:

travis {

id_number = 2030

height {

.feet = 5

.inches = 11

}

num_classes = 2

classes = {2400, 2620}

}

Problem continues onto the next page

Page 2



Initial/PennID:

Interpretation

However, if we actually printed the result of create travis(), the output would not match the expected
result. What would be wrong with the printed output and why?

// You don’t need to use all of this space

Page 3



Initial/PennID:

2 Hamming Weight Calculation Using Bit Manipulations [12 Points]

Write a function in C that calculates and returns the amount of 1 bits (the Hamming weight) in the binary
representation of an unsigned integer.

Assume that an unsigned int is 32 bits.

For example, if the input was 0xFFFFFFFF (all 1’s) then 32 should be returned.

If the input was 7 (0000 0000 [20 more 0’s]... 0111) then the function should return 3.

unsigned int hamming_weight(unsigned int x){

}

Page 4



Initial/PennID:

3 Two’s Complement Galore [17 Points]

You are given the following two 8-bit hexadecimal numbers which are declared as chars:

A = 0xEB, B = 0x3E

For convenience, the range of signed chars is from −128 to 127.

(a) Interpretation [3 Points]

Convert both A and B from hexadecimal to binary. Clearly label each.

(b) Addition [6 Points]

We want to take the two chars A and B from the previous part, add them together and store the result in
another char variable. E.g.

char sum = A + B;

Compute the resulting character sum that we get from adding A and B using two’s complement arithmetic.
Use your results from part (a) and show your steps for the binary addition, carry’s, etc. Clearly label the bits
that would make up the char sum .

Page 5



Initial/PennID:

Assume your system supports 4 bit signed numbers who’s type is called a half char. You are given the
following two 4-bit binary numbers declared as half chars.

C = 0b1011, D = 0b0110

(c) Casting from half char to char [8 Points]

Now, assume you want to cast these two signed half chars, C and D, to chars (which we’ll assume are 8
bits in size). When casting from 4-bits half char to a 8-bits char, the system will copy the four bits into
the bottom four bits of the result and then ”fill in” the upper 4 bits.

half char C = 0b1011
char full_C = (char) C;
// full_c will be 0b XXXX 1011. Note the bottom four bits are the same as the original.

// We leave the value of the upper 4 bits hidden since

// you need to figure that out for this question.

When filling in the upper 4-bits, it needs to make sure that the decimal value remains the same in two’s
complement form whether it is 4-bits or 8-bits.

What should the 8-bit binary representation be after this cast of C and D? In other words, what should the
upper 4 bits be filled with for C and D respectively. Please justify your answer.

Page 6



Initial/PennID:

4 Dynamic Array Implementation in C [23 Points]

In this question, you will implement a dynamic array (vector) structure in C. Below is the definition of a
vector struct, along with some partially implemented functions.

typedef struct vec_st {
int* data; // Inner array that the vector manages.

size_t len; // Number of elements currently stored in the vector.

size_t capacity; // Maximum number of elements the inner array can hold before resizing.

} vec;

A vector is a type of ”list” data structure that maintains an underlying array. When an element is added to the
vector, it is added to the end of the underlying array. If the we needed to add more elements to the vector but
have run out of space, we resize its underlying array by doubling the capacity of the array. After, we add the
new element.

For example, this vector has a capacity of three but only contains 2 integers.

If we push 2400 onto the end of the vector via vec push(&v, 2400), then the last box on the right with a /
(in the figure above) now holds the value 2400. len is updated to 3 while capacity stays the same.

If we push another value, 3800, onto the end of our vector, we would need to resize the array to support
holding more elements. We double the size of our array when we need to resize so len is updated to 4 while
capacity is increased to 6. This results in the following:

Problem continues onto the next page

Page 7



Initial/PennID:

Below are three core functions that are used to manage the vector.

// Creates a new vector with a specified initial capacity.

// Assume the initial capacity is greater than 0.

vec vec_new(size_t initial_capacity) {
vec result;

result.data = malloc(sizeof(int) * initial_capacity);
result.len = 0;

result.capacity = initial_capacity;

return result;
}

// Gets the integer value stored at the specified index in the vector.

// This operation does not change the length or capacity of the vector.

int vec_get(vec* this, size_t index) {
return this->data[index];

}

// Sets the integer value at the specified index to a new value.

// This operation does not change the length or capacity of the vector.

void vec_set(vec* this, size_t index, int element) {
this->data[index] = element;

}

You do not need to read this code, but we provide it as a reference in-case it helps understand how one
would use a vector. If you are comfortable with the idea of what a vector is, then feel free to move on to
the next page (where the problem continues)

int main() {
vec v = vec_new(3); // Create a new vector with an initial capacity of 3.

vec_push(&v, 1600);

vec_push(&v, 1200);

vec_push(&v, 2400);

// v.len should be 3 (three elements have been added).

// v.capacity should still be 3 (it has not been resized yet).

vec_push(&v, 3800);

// v.len should be 4 (a new element was added).

// v.capacity should be 6 (the vector resized to double its capacity).

vec_set(&v, 0, 1100); // Set the value at index 0 to 1100.

for (size_t i = 0; i < v.len; i++) { // Loop through and print all values in the vector.
printf("%d\n", vec_get(&v, i));

}

free(v.data); // Free the memory allocated for the vector.

}

Page 8



Initial/PennID:

(a) Implement the vec push function [15 Points]

The vec push function adds a new element to the end of the vector. If the vector’s internal array does not
have enough capacity, then the array is resized with double the capacity before adding the new element.
Implement this function in C. You are not allowed to use realloc. You may assume functions like malloc
always succeeds and that this is a valid vector.

void vec_push(vec* this, int element) {

}

Page 9



Initial/PennID:

(b) Pointer Passing [8 Points]

The vec get function currently takes a pointer to a vec structure. Could this function be rewritten to take
the vector by value (i.e., vec instead of vec *) and still behave correctly? Justify your answer.

// You do not need to use all of this space

Page 10



Initial/PennID:

5 Bit Error Detection [35 Points]

You are given a 3-bit sequence, 𝐼2𝐼1𝐼0, where 𝐼2 is a parity bit used to verify whether the number of 1s in the
last two bits, (𝐼1 and 𝐼0), is even or odd.

The rules for interpreting the parity bits are as follows for valid sequences:

• If 𝐼2 is 0, the number of 1s in 𝐼1𝐼0 should be even (0 counts as even in this case).

• If 𝐼2 is 1, the number of 1s in 𝐼1𝐼0 should be odd.

If the sequence does not follow the rules described above, it is considered an invalid sequence of bits. (An
example of an invalid sequence is 111).

(a) Logic Expression [5 Points]

Write a boolean logic expression that checks the validity of the 3-bit sequence. The expression should
evaluate to true if the sequence is valid, false otherwise. Do not use ∩ or ∪ notation nor code.

(b) Detecting Errors Using Logic Gates [10 Points]

Based on your expression in part (a), create a gate-level logic circuit that takes in 𝐼0, 𝐼1, and 𝐼2 and outputs 1
if the sequence is valid, 0 otherwise.

Page 11



Initial/PennID:

(c) CMOS [10 Points]

Design a proper CMOS circuit which takes in all 3 bits of the input I and produces the output bit. You can
assume that you also have access to negated versions of all of the input bits. Your solution must be a single
CMOS circuit consisting of complementary pull up and pull down transistor networks. It should not involve
cascading multiple CMOS circuits. Please label the inputs and outputs of your circuit clearly on your
schematic.

Page 12



Initial/PennID:

(d) Error Handling with a Multiplexer [10 Points]

Let’s decide how to handle data transmission based on the result of the error detection logic circuit. The
system must meet the following conditions:

• If no error is detected, the original 3-bit data should be output.

• If an error is detected, output a sequence of 1s (e.g., 111).

Draw a logic circuit diagram using a multiplexer (MUX) and any necessary logic gates to select between
transmitting the original 3-bit data or the error signal based on the conditions described above. You may
assume you have access to the solution from part (b) as a box labeled ”B” in your diagram.

Page 13



Initial/PennID:

6 Bonus Question [1 Point: all submissions will get this 1 point]

Put anything you’d like the course staff to see here. This can be nothing, a piece of art, a message to members
of the staff, anything you like! If you can’t come up with anything, then a suggestion would be to write down
your favorite aspect(s)/topic(s) of the course so far!

Page 14



Initial/PennID:

Scratch Work Page

Page 15


	Memory Diagram and Structs [12 Points]
	Hamming Weight Calculation Using Bit Manipulations [12 Points]
	Two’s Complement Galore [17 Points]
	Dynamic Array Implementation in C [23 Points]
	Bit Error Detection [35 Points]
	Bonus Question [1 Point: all submissions will get this 1 point]

