
CIS 240 Fall 2019: Midterm
Oct 23, 2019

Name :

Please write your name on the exam and the exam booklet and turn in both. You can
answer the questions on this exam sheet or in the exam booklet. Please number the
questions you are addressing clearly in the exam booklet.

Question 1 {25 pts}

Your job is to design a circuit that will take as input a 3-bit value, I and produce a 2-bit
output O, which indicates the number of 1 bits in the input. For example, if I = 101 then
O should be 10, if I = 010 then O = 01. In your diagram I2, I1 and I0 should indicate the 3
bits of the input and O1 and O0 the two bits of the output where O1 is the MSB.
Remember that we cannot grade what we cannot read so please make your diagrams as
neat and clear as possible.

a) {5 pts} First provide a truth table indicating what the output O should be for every
possible value of the input I.

b) {5 pts} Design 2 PLA circuits to produce the two output bits O1 and O0.
c) {10 pts} Design 2 CMOS circuits to produce the two output bits O1 and O0. You

can assume that you have access to negated versions of all of the input bits. Your
solution should consist of one CMOS network for each output bit. It should not
involve cascading multiple CMOS circuits.

d) {5 pts} If the PLA circuit you provide for part b is ultimately implemented on the
same kind of CMOS technology that you would use for your answer to part c
which implementation do you think would have the lower overall delay? Explain
your answer.

Question 2 {15 pts}

a) List every LC4 instruction that requires the Privilege.CTL signal to be set to 1
b) List every LC4 instruction that requires the ALU.CTL signal to be set to 5
c) List every LC4 instruction that requires the ALU.CTL signal to be set to 6
d) List every LC4 instruction that requires the DATA.WE signal to be set to 1
e) List every LC4 instruction that requires the regInputMux.CTL signal to be set to 2

Question 3 {20 pts}

The table below shows the contents of a region of User Code memory in PennSim. First
convert the machine instructions you see here to an equivalent sequence of assembly
instructions so you can read them. Note the assembly program on this answer sheet or in
your test booklet. After you have done this, show what would happen when the program
is executed by filling in the second table which shows the state of all of the registers at
the start of each instruction cycle. Fill in the NZP entries with N for negative, Z for zero
and P for positive. You must fill in the PC and NZP for every clock cycle, for the register
values R0-R7 you only need to fill in the values of the registers that have changed from
the previous cycle, if any. You should enter all values as decimal numbers, not hex.

Hint: start by looking at the four bit opcode – be careful how you break up the 16 bit
fields, one bit can make a big difference.

Address Machine Instruction Assembly Instruction
0 0001010000001001
1 0000100000000010
2 0000001000000010
3 0000111111111111
4 1001000000000100
5 0001001001111111
6 1100111111111001

Instruction
Cycle

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

PC 0
NZP P
R0 -3
R1 2
R2 0
R3 0
R4 0
R5 0
R6 0
R7 0

Question 4 {15 pts}

Your job in this question is to design part of the Decoder circuit for our Single Cycle LC4
implementation.

a) {10 pts} Produce a PLA circuit that takes as input the relevant bits from the
current instruction and produces as output the regFile.WE signal.

b) {5 pts} Produce a second PLA circuit that generates the NZP.WE signal. Hint you
can use the regFile.WE signal as an input to this second circuit.

Please use the convention I15, I14, … ,I0 to refer to bits in the instruction word where I15 is
the MSB and I0 the LSB. Please note that we are asking for a PLA implementation
specifically, alternative implementations will receive less points.

Question 5 {5 pts}

One odd feature of the LC4 instruction set is that the MOD operation does not have the
same opcode as the other arithmetic operations that it is most closely related to namely:
ADD, MUL, SUB, DIV and ADD Immediate. Explain briefly why we cannot give MOD
the same opcode as these other operations given the way that these other instructions are
currently encoded.

LC4 Instruction Set Reference v. 2017-01
Mnemonic Semantics Encoding
NOP PC = PC + 1 0000 000x xxxx xxxx
BRp <Label> (P) ? PC = PC + 1 + (sext(IMM9) o�set to <Label>) 0000 001i iiii iiii
BRz <Label> (Z) ? PC = PC + 1 + (sext(IMM9) o�set to <Label>) 0000 010i iiii iiii
BRzp <Label> (Z|P) ? PC = PC + 1 + (sext(IMM9) o�set to <Label>) 0000 011i iiii iiii
BRn <Label> (N) ? PC = PC + 1 + (sext(IMM9) o�set to <Label>) 0000 100i iiii iiii
BRnp <Label> (N | P) ? PC = PC + 1 + (sext(IMM9) o�set to <Label>) 0000 101i iiii iiii
BRnz <Label> (N|Z) ? PC = PC + 1 + (sext(IMM9) o�set to <Label>) 0000 110i iiii iiii
BRnzp <Label> (N|Z|P) ? PC = PC + 1 + (sext(IMM9) o�set to <Label>) 0000 111i iiii iiii
ADD Rd Rs Rt Rd = Rs + Rt 0001 ddds ss00 0ttt
MUL Rd Rs Rt Rd = Rs * Rt 0001 ddds ss00 1ttt
SUB Rd Rs Rt Rd = Rs - Rt 0001 ddds ss01 0ttt
DIV Rd Rs Rt Rd = Rs / Rt 0001 ddds ss01 1ttt
ADD Rd Rs IMM5 Rd = Rs + sext(IMM5) 0001 ddds ss1i iiii
MOD Rd Rs Rt Rd = Rs % Rt 1010 ddds ss11 xttt
AND Rd Rs Rt Rd = Rs & Rt 0101 ddds ss00 0ttt
NOT Rd Rs Rd = ~Rs 0101 ddds ss00 1xxx
OR Rd Rs Rt Rd = Rs | Rt 0101 ddds ss01 0ttt
XOR Rd Rs Rt Rd = Rs · Rt 0101 ddds ss01 1ttt
AND Rd Rs IMM5 Rd = Rs & sext(IMM5) 0101 ddds ss1i iiii
LDR Rd Rs IMM6 Rd = dmem[Rs + sext(IMM6)] 0110 ddds ssii iiii
STR Rt Rs IMM6 dmem[Rs + sext(IMM6)] = Rt 0111 ttts ssii iiii
CONST Rd IMM9 Rd = sext(IMM9) 1001 dddi iiii iiii
HICONST Rd UIMM8 Rd = (Rd & 0xFF) | (UIMM8 << 8) 1 1101 dddx uuuu uuuu
CMP Rs Rt NZP = sign(Rs - Rt) 2 0010 sss0 0xxx xttt
CMPU Rs Rt NZP = sign(uRs - uRt) 3 0010 sss0 1xxx xttt
CMPI Rs IMM7 NZP = sign(Rs - sext(IMM7)) 0010 sss1 0iii iiii
CMPIU Rs UIMM7 NZP = sign(uRs - UIMM7) 0010 sss1 1uuu uuuu
SLL Rd Rs UIMM4 Rd = Rs << UIMM4 1010 ddds ss00 uuuu
SRA Rd Rs UIMM4 Rd = Rs >>> UIMM4 1010 ddds ss01 uuuu
SRL Rd Rs UIMM4 Rd = Rs >> UIMM4 1010 ddds ss10 uuuu
JSRR Rs R7 = PC + 1; PC = Rs 0100 0xxs ssxx xxxx
JSR <Label> R7 = PC + 1; PC = (PC & 0x8000) | ((IMM11 o�set to <Label>) << 4) 0100 1iii iiii iiii
JMPR Rs PC = Rs 1100 0xxs ssxx xxxx
JMP <Label> PC = PC + 1 + (sext(IMM11) o�set to <Label>) 1100 1iii iiii iiii
TRAP UIMM8 R7 = PC + 1; PC = (0x8000 | UIMM8); PSR [15] = 1 1111 xxxx uuuu uuuu
RTI PC = R7; PSR [15] = 0 1000 xxxx xxxx xxxx

Pseudo-Instructions
RET Return to R7 JMPR R7
LEA Rd <Label> Store address of <Label> in Rd CONST/HICONST
LC Rd <Label> Store value of constant <Label> in Rd CONST/HICONST

Assembler Directives
.CODE Current memory section contains instruction code
.DATA Current memory section contains data values
.ADDR UIMM16 Set current memory address value to UIMM16
.FALIGN Pad current memory address to next multiple of 16
.FILL IMM16 Current memory address’s value = IMM16
.STRINGZ "String" Expands to a .FILL for each character in "String"
.BLKW UIMM16 Reserve UIMM16 words of memory from the current address
<Label> .CONST IMM16 Associate <Label> with IMM16
<Label> .UCONST UIMM16 Associate <Label> with UIMM16

0101: opcode or sub-opcode ddd: destination register sss: source register 1 ttt: source register 2
iii: signed immediate value uuu: unsigned immediate value xxx: “don’t care” value

1In this case the source and destination register are one and the same as HICONST reads and modifies the same register.
2sign(Rs- Rt) results in one of three values: +1, 0, or -1, which set the appropriate bit in the NZP register.
3sign(uRs- uRt) indicates that Rs and Rt are treated as unsigned values.
4The NZP register is updated on any instruction that writes to a register, and on CMPx instructions.

I[8
:6

]

RT
[1

5:
0]

R
S[

15
:0

]

rd
M

ux
.C

TL

rtM
ux

.C
TL

R
eg

is
te

r
Fi

le

AL
U

In
pu

tM
ux

.C
TL

AL
L

C
TL

SI

G
N

AL
S

(0
x8

00
0

| U
IM

M
8)

I[1
0:

0]

Pr
og

ra
m

M
em

or
y

PC

D
AT

A
M

em
or

y

N
ZP

R

eg
is

te
r

PS
R

[2
:0

]

+ +TE
STI[1
5:

0]

W
rit

e
In

pu
t

In
st

ru
ct

io
n

Ad
dr

es
s

PC
[1

5:
0]

I[1
1:

9]

R
S[

15
:0

]

I[7
:0

]

SE
XT

(I[
10

:0
])

SE
XT

(I[
8:

0]
)

In
st

ru
ct

io
n

rs
.a

dd
r

rt.
ad

dr

rd
.a

dd
r

re
gF

ile
.W

E

I[2
:0

]

I[1
1:

9]

0 1

10

10 2 3 4 (P
C

 &
 0

x8
00

0)
 |

(IM
M

11
<<

4)

PC
M

ux
.C

TL

AL
U

.C
TL

D
at

a
Ad

dr
es

s

D
at

a
In

pu
t

D
at

a
O

ut
pu

t

re
gI

np
ut

M
ux

.C
TL

D
AT

A.
W

E

Si
ng

le
 C

yc
le

 Im
pl

em
en

ta
tio

n
of

 th
e

LC
4

IS
A

N
ZP

.W
E

0x
07

0 1

rs
M

ux
.C

TL

0 1
0x

07
2

I[1
1:

9]

I[1
1:

9]

N
ZP

Te
st

er

+1

5

PC
+1

0 1 2

AL
U

Br
an

ch
 U

ni
t

D
ec

od
e

I[1
5:

0]

Pr
iv
ile
ge

.C
TL

PS
R[
15

]

A B

0 1

C

Description	of	Control	Signals	in	Single	Cycle	Implementation	of	the	LC4	ISA	
	

Signal	Name	 #	of	bits	 Value	 Action	
PCMux.CTL	 3	 0	 Value	of	NZP	register	compared	to	bits	I[11:9]	of	the	current	

instruction	if	the	test	is	satisfied	then	the		output	of	TEST	is	1	and	
NextPC	=	BRANCH	Target,	(PC+1)	+	SEXT(IMM9);	otherwise	the	
output	of	TEST	is	0	and	NextPC	=	PC	+	1	

1	 Next	PC	=	PC+1	
2	 Next	PC	=	(PC+1)	+	SEXT(IMM11)	
3	 Next	PC	=	RS	
4	 Next	PC	=	(0x8000	|	UIMM8)	
5	 Next	PC	=	(PC	&	0x8000)	|	(IMM11	<<	4)	

rsMux.CTL	 2	 0	 rs.addr	=	I[8:6]	
1	 rs.addr	=	0x07	
2	 rs.addr	=	I[11:9]	

rtMux.CTL	 1	 0	 rt.addr	=	I[2:0]	
1	 rt.addr	=	I[11:9]	

rdMux.CTL	 1	 0	 rd.addr	=	I[11:9]	
1	 rd.addr	=	0x07	

regFile.WE	 1	 0	 Register	file	not	written	
1	 Register	file	written:	rd.addr	indicates	which	register	is	updated	

with	the	value	on	the	Write	Input	
regInput.Mux.CTL	 2	 0	 Write	Input	=	ALU	output	

1	 Write	Input	=	Output	of	Data	Memory	
2	 Write	Input	=	PC	+	1	

NZP.WE	 	 1	 0	 NZP	register	not	updated	
1	 NZP	register	updated	from	Write	Input	to	register	file	

DATA.WE	 1	 0	 Data	Memory	not	written	
1	 Data	Input	written	into	location	on	Data	Address	lines	

Privilege.CTL	 2	 0	 PSR[15]	=	0	–	Clear	privilege	bit	
1	 PSR[15]	=	1	–	Set	privilege	bit	
2	 PSR[15]	unchanged	–	no	change	to	privilege	bit	

ALUInputMux.CTL	 1	 0	 B[15:0]	=	RT[15:0]	–	B	input	to	ALU	=	RT	
1	 B[15:0]	=	I[15:0]	–	B	input	to	ALU	=	Instruction	Word	

	
Signal	Name	 #	of	bits	 Value	 Action	
ALU.CTL	 6	 	 	

Arithmetic	Ops	 0	 C	=	A	+	B	:	Addition	
1	 C	=	A	*	B	:	Multiplication	
2	 C	=	A	-	B	:	Subtraction	
3	 C	=	A	/	B	:	Division	
4	 C	=	A	%	B	:	Modulus	
5	 C	=	A	+	SEXT(B[4:0])	
6	 C	=	A	+	SEXT(B[5:0])	

Logical	Ops	 8	 C	=	A	AND	B	:	Bitwise	Logical	Product	
9	 C	=	NOT	A:	Bitwise	Negation	
10	 C	=	A	OR	B:	Bitwise	Logical	Sum	
11	 C	=	A	XOR	B:	Bitwise	Exclusive	OR	
12	 C	=	A	AND	SEXT(B[4:0])	

Comparator	Ops	 16	 C	=	signed-CC(A-B)	[-1,	0,	+1]	
17	 C	=	unsigned-CC(A-B)	[-1,	0,	+1]	
18	 C	=	signed-CC(A-SEXT(B[6:0]))	[-1,	0,	+1]	
19	 C	=	unsigned-CC(A-SEXT(B[6:0]))	[-1,	0,	+1]	

Shifter	Ops	 24	 C	=	A	<<	B[3:0]	:	Shift	Left	Logical	
25	 C	=	A	>>>	B[3:0]	:	Shift	Right	Arithmetic	
26	 C	=	A	>>	B[3:0]	:	Shift	Right	Logical	

Constant	Ops	 32	 C	=	SEXT(B[8:0])	
33	 C	=	(A	&	OxFF)	|	(B[7:0]	<<	8)	

	

