
	
CIS	240	Fall	2019:	Final	
	
Please	put	all	answers	in	the	exam	booklet	and	remember	to	number	them	
clearly.		
	
Question	1	{10	pts}	
	
Part	1:	{6	pts}	
Your	job	is	to	design	a	PLA	circuit	that	takes	as	input	a	4	bit	input	I	where	I0	is	the	
LSB	and	I3	is	the	MSB	and	returns	a	high	output	if	and	only	if	the	number	is	a	
palindrome,	which	means	that	you	get	the	same	sequence	of	bits	if	you	read	it	
forward	or	backwards.	As	an	example,	1001	and	0110	are	4-bit	palindromes	while	
1100	is	not.	Please	make	sure	to	label	your	input	signals	clearly.	
	
Part	2:	{4	pts}	
For	this	part	you	are	going	to	redesign	the	circuit	that	you	designed	in	part	1.	This	
time	it	does	not	have	to	be	a	PLA	but	you	are	only	allowed	to	use	2	input	logic	gates	
and	you	cannot	have	more	than	5	of	them.		You	can	use	any	2	input	gates	you	wish,	
AND,	OR,	NAND,	NOR,	XOR,	XNOR.	More	points	will	be	given	for	designs	that	use	
fewer	gates.	
	 	

	
Answer:	
	
There	are	only	4	4-bit	palindromes.	0000,	1111,	0110,	1001.	To	see	this	note	that	
the	last	2	bits	must	mirror	the	first	two	bits.	This	leads	to	a	straightforward	PLA	
implementation	with	4	and	gates	–	one	for	each	pattern.	
	
For	the	second	part	we	observe	that	we	can	use	the	XOR	gate	to	compare	two	bits.	
The	XOR	output	is	high	if	the	two	inputs	differ	and	the	XNOR	output	is	high	if	the	
two	inputs	are	the	same.	So,	there	are	two	optimal	implementations	–	one	uses	two	
XOR	gates	and	a	NOR	gate	and	the	other	uses	two	XNOR	gates	and	an	AND	gate.	Both	
solutions	use	3	gates	which	is	the	minimum	possible.	
	

	
	
	 	

Question	2	{10	pts}	
	
For	your	CIS	240	homework	you	write	a	TRAP	routine	that	is	designed	to	place	a	
single	character	on	the	ASCII	output	console.	It	is	called	TRAP_PUTC	and	it	works	
perfectly.	You	are	then	asked	to	write	a	second	routine,	TRAP_PUT_STRING	that	
puts	a	sequence	of	characters	on	the	ASCII	console.	Not	wanting	to	waste	effort,	you	
figure	that	you	can	just	call	your	TRAP_PUTC	trap	repeatedly	as	the	following	
pseudo	code	shows.	
	
TRAP_PUT_STRING	
	 WHILE	(current	character	is	not	null	–	i.e.	not	at	end	of	string)	
	 	 Send	current	character	to	screen	by	using	TRAP		

instruction	to	call	TRAP_PUTC	
	 	 Advance	to	next	character	
	
Would	this	idea	of	using	the	trap	instruction	to	call	TRAP_PUTC	from	inside	
TRAP_PUT_STRING	work?	Carefully	explain	why	or	why	not.	
	
Answer:	
	
This	would	actually	work	it	TRAP_PUTC	was	a	regular	subroutine.	However,	since	it	
is	a	trap	routine	it	ends	with	a	call	to	RTI	which	returns	control	to	the	calling	context	
but	also	reduces	privilege	to	user	level.	The	problem	then	is	when	
TRAP_PUT_STRING	called	TRAP_PUTC	it	would	dutifully	place	the	first	character	on	
the	output	and	then	return	to	the	TRAP_PUT_STRING	routine	with	privilege	set	to	
USER	level.	Since	TRAP_PUT_STRING	is	in	the	operating	system	part	of	memory	this	
would	cause	a	problem	since	we	would	be	trying	to	execute	OS	code	without	OS	
privilege	which	would	cause	an	exception.	 	

Question	3	{10	pts}	
	
Your	cousin,	Crazy	Eddie,	is	looking	over	your	slides	for	CIS	240	particularly	the	
ones	on	how	TRAPs	are	handled.	When	he	comes	across	the	slide	shown	below,	he	
snorts	and	says:	“This	is	way	too	complicated!	Why	don’t	we	just	place	the	trap	
routine	we	want	to	call,	TRAP_FOO,	at	the	address	that	TRAP	is	going	to	jump	to,	
x8024,	and	avoid	the	intermediate	JMP	instruction.	That	should	work	just	fine.”	

	
	
Question	1:	Is	Crazy	Eddie	right,	would	the	trap	routine	work	correctly	if	it	were	
moved	up	to	start	at	x8024	avoiding	the	JMP	instruction.	
	
Question	2:	Would	this	change	create	other	potential	problems?	Explain	your	
answer.	
	
Answer:	
	
Crazy	Eddie	is	right	in	that	the	TRAP	would	work	correctly	if	it	were	placed	at	x8024	
instead	of	further	down	in	memory.	
	
The	problem	is	that	if	we	do	that	the	user	could	jump	into	arbitrary	parts	of	the	
TRAP_FOO	routine	by	calling	trap	with	values	greater	that	x24.	For	example	TRAP	
x26	would	start	execution	at	the	second	instruction	of	the	TRAP_FOO	which	isn’t	
desirable.	Since	the	user	can	call	TRAP	with	any	value	this	would	create	all	kinds	of	
potential	problems	and	security	vulnerabilities.	
	

CIS 240

Anatomy of a Trap
• When a TRAP is called the

CPU sets PSR[15]=1,
stores PC+1 in R7 and
Jumps to the entry in the
TRAP Table

• This Entry is another JMP
instruction which redirects
to the TRAP routine

• When RTI is called the PC
is set to R7 which should
contain the return address
and sets PSR[15] = 0

8-27

TRAP TABLE
256 Entries

STR R6, R5, #0

TRAP x24

CONST R6,

x0000

USER CODE
PSR[15] ==0

x0011

x0010

x0012

JMP TRAP_FOO

ADD R5, ...

SLL R6, ...

x8000

OS CODE
PSR[15] == 1

TRAP_FOO

x8024

x90E0

RTI

PSR[15] = 1
PC = x8024
R7 = x0012

PC = TRAP_FOO

PSR[15] = 0
PC = R7 (= x0012)x8200 OS_STARTS

Question	4	{10	pts}	
	
Consider	the	following	C	program	
	
#include	<stdlib.h>	
	
/*	allocate	a	buffer	to	store	100	ints	*/	
void	allocate_buffer	(int	*ptr)	{	
		ptr	=	malloc(100*sizeof(int));	
}	
	
int	main	()	{	
		int	i,	*buf;	
	
		allocate_buffer	(buf);	
		for(i=0;	i	<	100;	++i)	buf[i]	=	i;	
}	
	
Does	the	program	compile	without	issue?	Could	the	code	cause	a	segmentation	
violation	or	not?	Explain	your	answer	briefly.	
	
Answer:	
	
The	code	will	in	fact	compile	since	there	are	no	syntactic	errors.	
	
The	problem,	however,	is	that	the	code	doesn’t	actually	do	what	it	looks	like	it's	
doing.	It	looks	like	the	allocate_buffer	function	allocates	memory	that	we	can	store	
into	and	it	does	in	fact	call	malloc.	The	issue	is	that	C	is	a	call	by	value	language	
which	means	that	when	we	call	allocate_buffer	we	pass	in	the	current	value	of	the	
pointer	buf	but	the	value	of	buf	is	not	changed	by	the	function.	This	means	that	
when	we	get	to	the	for	loop	buf	had	the	same	value	it	had	before	and	since	it	started	
off	uninitialized,	we	have	no	idea	what	it	points	to.	When	we	start	writing	into	
locations	referenced	to	buf	we	could	absolutely	get	a	segmentation	violation.	The	
storage	allocated	by	malloc	is	lost	in	this	implementation,	a	memory	leak.	
	
If	we	wanted	to	fix	this	code	one	way	to	do	it	would	be	as	follows.	
	
void	allocate_buffer	(int	**ptr)	{	
		*ptr	=	malloc(100*sizeof(int));	
}	
	
Then	call	the	routine	as	follows	
	
allocate_buffer(&buf);	
	

Here	we	would	be	passing	the	ADDRESS	of	the	variable	buf	to	the	allocate_buffer	
routine	as	opposed	to	the	value	of	the	variable.	We	can	then	store	the	value	we	want	
into	this	address.	
	
An	even	better	idea	would	be	to	have	allocate_buffer	return	the	address	to	the	
memory	it	allocated.	
	
int	*	allocate_buffer()	{	
			return	malloc(100*sizeof(int));	
}	
	
Then	you	could	simply	assign	buf	this	value	in	the	main	routine.	
	
buf	=	allocate_buffer();	
	
	
	
Question	5	{10	pts}	
	
Your	cousin,	Crazy	Eddie,	is	really	annoyed	by	the	fact	that	he	needs	to	FALIGN	all	of	
his	subroutines	in	LC4	assembly.	He	thinks	that	alignment	wastes	space	and	that	he	
should	be	able	to	start	subroutines	on	any	address	he	pleases.	He	thinks	about	it	for	
a	bit	and	then	brightens	and	replaces	this	line	in	his	assembly	code.	
	
JSR	my_subroutine	
	
With	this	sequence.	
	
LEA	R0,	my_subroutine	
JSRR	R0	
	
	
Will	Crazy	Eddie’s	code	work	even	when	the	subroutine	being	called	starts	on	an	
address	that	isn’t	a	multiple	of	16?	What	are	the	performance	consequences	of	this	
change?	
	
Answer:	
	
Eddie	is	correct	this	will	work	even	if	my_subroutine	does	not	start	on	an	aligned	
address.	The	only	issue	is	that	this	implementation	involves	3	instructions	–	the	LEA	
expands	to	a	CONST,	HICONST	pair	then	the	JSRR	instruction	so	we	are	using	3	
instructions	to	call	a	subroutine	instead	of	a	single	JSR	instruction.	
	 	

Question	6	{10	pts}	
	
Consider	the	following	portion	of	a	C	library	which	provides	two	routines	one	for	
adding	an	element	to	a	doubly	linked	list	and	another	for	deleting	an	element.	A	few	
of	the	lines	have	been	blanked	out.		Your	job	is	to	tell	us	what	each	of	the	missing	
lines	should	be	to	correctly	complete	the	code.	
	
#include	<stdlib.h>	
	
typedef	struct	list_elt_tag	{	
		int	number;	
		//	Pointers	to	the	previous	and	next	elements	in	the	list	
		struct	list_elt_tag	*prev,	*next;	
}	list_elt;	
	
	
/*		
	*	Creates	a	new	list	element	and	pushes	it	on	the	front	of	the	list	
	*	returns	a	pointer	to	the	newly	created	element.	
	*/	
	
list_elt	*push	(list_elt	*first_elt,	int	number)	
{	
		list_elt	*elt;	
	
		//	Allocate	a	new	list	element	with	malloc	
		elt	=	malloc	(sizeof(*elt));	
	
		//	If	malloc	fails	end	the	program	
		if	(elt	==	NULL)	{	
				exit	(1);	
		}	
	
		elt->number	=	number;	
			
		MISSING_LINE_1;			elt->prev	=	NULL;	
	
		elt->next	=	first_elt;	
	
		if	(first_elt	!=	NULL)	
				first_elt->prev	=	elt;	
	
		//	return	the	pointer	to	the	new	list_elt	
		return	elt;	
}	
	

	
/*	
	*	delete:	Deletes	an	element	from	the	list	returns	a	pointer	to	the	new	
	*	first	element	of	the	list	which	may	just	be	the	old	first	element.	
	*/	
	
list_elt	*delete	(list_elt	*first_elt,	list_elt	*elt)	
{	
		list_elt	*prev,	*next;	
	
		if	(elt	==	NULL	||	first_elt	==	NULL)	{	
				return	first_elt;	
		}	
			
		MISSING_LINE_2;	prev	=	elt->prev;	
	
		next	=	elt->next;	
	
		/*	First	we	fix	the	pointers	of	the	next	and	previous	elements	*/	
		if	(prev)	{	
				prev->next	=	elt->next;	
		}	
			
		if	(next)	{	
				MISSING_LINE_3;		next->prev	=	elt->prev;	or	just	prev	
		}	
			
		MISSING_LINE_4;	free(elt)	
	
		//	Check	if	elt	was	the	first	element	in	the	list	
		if	(elt	==	first_elt)	
						MISSING_LINE_5;	return	next;	
		else	
				return	first_elt;	
}	
	
	 	

Question	7	(10	pts)	
	
The	following	piece	of	C	code	was	compiled	with	the	lcc	compiler.	
	
void	strcpy	(char	*src,	char	*dest,	int	n)	{	
		int	i;	
		for	(i=0;	i	<	n;	++i)	{	
				if	(src[i])	{	
						dest[i]	=	src[i];	
				}	else	{	
						break;	
				}	
		}	
}	
	
The	resulting	LC4	assembly	code	fragment	is	shown	below.	Several	of	the	assembly	
instructions	have	been	blacked	out.	Your	job	is	to	figure	out	what	those		assembly	
instructions	must	have	been.	
	
;;;;;;;;;;;;;;;;;;;;;;;;;;;;strcpy;;;;;;;;;;;;;;;;;;;;;;;;;;;;	
	 	 .CODE	
	 	 .FALIGN	
strcpy	
	 ;;	prologue	
	 STR	R7,	R6,	#-2	 ;;	save	return	address	
	 STR	R5,	R6,	#-3	 ;;	save	base	pointer	
	 ADD	R6,	R6,	#-3	
	 ADD	R5,	R6,	#0	
	 ADD	R6,	R6,	#-1	 ;;	allocate	stack	space	for	local	variables	
	 ;;	function	body	
	 MISSING_INSN_1	--	CONST	R7,	0	
	 STR	R7,	R5,	#-1	
	 JMP	L5_final2019	
L2_final2019	
	 LDR	R7,	R5,	#-1	
	 LDR	R3,	R5,	#3	
	 ADD	R7,	R7,	R3	
	 LDR	R7,	R7,	#0	
	 CONST	R3,	#0	
	 CMP	R7,	R3	
	 MISSING_INSN_2	–	BRz	L4_final_2019	or	L1_final_2019	these	
	 LDR	R7,	R5,	#-1	
	 LDR	R3,	R5,	#4	
	 ADD	R3,	R7,	R3	
	 LDR	R2,	R5,	#3	
	 ADD	R7,	R7,	R2	

	 LDR	R7,	R7,	#0	
MISSING_INSN_3	–	STR	R7,	R3,	0	

L7_final2019	
L3_final2019	
	 LDR	R7,	R5,	#-1	

MISSING_INSN_4	–	ADD	R7,	R7,	#1	
	 STR	R7,	R5,	#-1	
L5_final2019	
	 LDR	R7,	R5,	#-1	
	 LDR	R3,	R5,	#5	
	 CMP	R7,	R3	
	 BRn	L2_final2019	
L4_final2019	
L1_final2019	
	 ;;	epilogue	
	 ADD	R6,	R5,	#0	 ;;	pop	locals	off	stack	
	 ADD	R6,	R6,	#3	 ;;	free	space	for	return	address,	base	pointer,	and	return	
value	
	 STR	R7,	R6,	#-1	 ;;	store	return	value	
	 LDR	R5,	R6,	#-3	 ;;	restore	base	pointer	

MISSING_INSN_5	–	LDR	R7,	R6,	#-2	
	 RET	
	
Question	8	(10	pts)	
	
For	the	final	assignment	you	were	asked	to	implement	a	compiler	that	converted	
programs	written	in	the	stack-based	J	language	into	assembly	instructions.		We	
want	to	add	the	following	two	new	commands	to	the	J	language	so	that	we	can	write	
programs	that	access	a	fixed	array	in	global	memory:	
	
global_write	:		Pops	the	first	value	off	the	stack	and	uses	that	as	an	index	into	the	
global	array.	Then	pops	the	next	value	off	of	the	stack	and	stores	this	value	into	the	
indicated	location	in	the	array.	Egs	7	2	global_write	would	store	the	value	7	into	the	
location	global_array[2].	The	entries	7	and	2	would	be	removed	from	the	stack.	
	
global_read	:	Pops	the	first	element	off	of	the	stack	and	uses	this	as	an	index	into	
the	global	array.	It	stores	the	value	at	that	location	in	the	global	array	at	the	top	of	
the	stack.	Egs.	3	global_read	–	would	place	the	value	stored	in	global_array[3]	at	the	
top	of	the	stack,	the	3	would	be	removed.	
	
For	each	of	these	two	J	commands	indicate	the	sequence	of	assembly	instructions	
that	your	revised	J	compiler	would	emit	when	it	encountered	them	in	a	program.	
You	can	assume	that	there	is	a	label	in	the	assembly	code	entitled	“global_array”	that	
marks	the	location	where	the	global	array	will	be	stored	in	memory.	Following	C	
convention,	the	array	indices	start	at	0	and	you	can	assume	that	the	at	run	time	the	
array	index	values	will	be	legal.	Please	use	comments	to	indicate	your	thinking.	

	
Answer:	
	
global_write:	
	
To	execute	this	we	have	to	do	the	following:	
	

1) Load	the	top	element	on	the	stack	into	a	register	–	this	is	the	array	index	
2) Compute	the	address	we	want	to	store	into	
3) Load	the	second	element	on	the	stack	into	a	register	–	value	to	write	
4) Store	the	value	in	the	global	array	
5) Pop	2	entries	from	the	stack	

	
Here	is	one	implementation	
	
	 LEA	R0,	global_array				;	load	the	address	of	global	array	
	 LDR	R1,	R6,	#0	 			;	load	the	index	
	 ADD	R0,	R0,	R1	 			;	compute	the	address	to	store	to		
														LDR	R2,	R6,	#1															;	load	the	value	
	 STR	R2,	R0,	#0	 			;	store	the	value	in	the	global	array	
	 ADD	R6,	R6,	#2														;	pop	2	values	from	the	stack	
	
	
global_read:	
	
To	execute	this	we	have	to	do	the	following:	
	

1) Load	the	top	element	on	the	stack	into	a	register	–	this	is	the	array	index	
2) Compute	the	address	we	want	to	store	into	
3) Get	the	value	from	the	global	array	
4) Load	the	value	onto	the	stack	replacing	the	current	top	element	

	
Here	is	one	implementation	
	
	 LEA	R0,	global_array				;	load	the	address	of	global	array	
	 LDR	R1,	R6,	#0	 		;	load	the	index	
	 ADD	R0,	R0,	R1	 			;	compute	the	address	to	load	from	
														LDR	R2,	R0,	#0														;	load	the	value	
	 STR	R2,	R6,	#0	 			;	store	the	value	on	top	of	the	stack	
	

