Description of Control Signals in our Single Cycle Implementation of the RISC-V 32I ISA

Signal Name	# of bits	value	action
PCMux.CTL	2	0	Next PC = output of ALU
		1	Next PC = result of branch instruction
		2	Next PC = PC + $(targ20 \ll 1)$
		3	Next PC = PC + 4
regFile.WE	1	0	Register file not written
		1	Register file written: rd will be updated with value of the write input
regInputMux.CTL	3	0	Write Input = ALU output
		1	Write Input = 4-bytes from Data Memory
		2	Write Input = sext 2-bytes from data memory
		3	Write Input = sext 1 byte from data memory
		4	Write Input = PC + value based on PCAddMux.CTL
PCAddMux.CTL	1	0	Send 4 + PC towards registers
		1	Send (I[31:12] << 12) + PC towards regs
DATA.WE	4	0	Data memory not written
		1	[0001] write the least significant byte from source register to data memory
		3	[0011] write the two lower bytes from source register to data memory
		15	[1111] write all four bytes of the source register to data memory
ALUInputMux.CTL	1	0	Second input to ALU is rs2
		1	Second input to ALU is I[31:0]
ALU.CTL	6		
Arithmetic Ops (I)		0	C = A + se(B[31:20])
		1	C = A < se(B[31:20]) ? 1 : 0
		2	C = A < unsigned se(B[31:20]) ? 1 : 0
		3	C = A ^ se(B[31:20])
		4	C = A se(B[31:20])

	5	C = A & se(B[31:20])
	6	C = A << se(B[24:20])
	7	C = A >> se(B[24:20])
	8	C = A >>> se(B[24:20])
Arithmetic Ops (R)	9	C = A + B
	10	C = A - B
	11	C = A << B[4:0]
	12	C = A < signed B ? 1 : 0
	13	C = A < unsigned B ? 1 : 0
	14	$C = A \wedge B$
	15	C = A >> B[4:0]
	16	C = A >>> B[4:0]
	17	$C = A \mid B$
	18	C = A & B
Comparator Ops	19	C = A == B ? 1 : 0
	20	C = A != B ? 1 : 0
	21	C = A < signed B ? 1 : 0
	22	C = A >= signed B ? 1 : 0
	23	C = A < unsigned B ? 1 : 0
	24	C = A >= unsigned B ? 1 : 0
Multiplication Ops	25	C = (A * B) [31:0]
	26	C = (signed(A) * signed(B))[63:32]
	27	C = (signed(A) * unsign(B))[63:32]
	28	C = (unsign(A) * unsign(B))[63:32]
Division Ops	29	C = A /signed B
	30	C = A /unsign B
	31	C = A %signed B
	32	C = A %unsign B
Misc	33	C = B[31:12] << 12
	34	C = A + se(B[31:20]) & ~0x1
	35	C = (B[31]B[19:12]B[20]B[30:21]) << 1
	36	C = A + se(B[31:25]B[11:7])