
CIS 194: Homework 4
Due Friday, September 26, 2014

No template file is provided for this homework. Start your HW04.hs
Haskell file with your name, any sources you consulted, and any
other relevant comments (just like in previous assignments). Then,
say

module HW04 where

and off you go. Do make sure to include this module header, as it
makes grading much easier for us.

Parametricity

Haskell comes with a wonderful feature called parametric polymor-
phism, which allows programmers to write datatypes and functions
that operate over a range of different types. Other languages sup-
port similar features, such as C++’s templates, Java’s generics, and
OCaml’s parametric polymorphism (which is ever-so-slightly differ-
ent than Haskell’s!)

In these exercises, I will be providing a type, and you have to
provide an implementation—any implementation—that typechecks.
The only rule is that your implementation must be total. That is,
given any input, your implementations must always run in a finite
time and return a value. This means that any of the following are
disallowed:

• Infinite recursion

• Pattern-matching that does not contain all cases

• undefined

• error

• Any function beginning with unsafe.

• The use of non-total functions, such as head, tail, init, etc.

This list is not complete, but you will generally write total functions
unless you’re trying to be devious. (Or accidentally write a loop.)

After writing your implementation for each exercise, write a com-
ment describing the nature of all implementations of functions with
that type. In particular, if the number of functions that can inhabit
the type is finite, say what it is. If it’s not finite, try to come up with
properties of the functions that you can read right from the type.

For example, if you have to implement

cis 194: homework 4 2

example1 :: a -> a

the only possible answer is

example1 x = x

We know that this must be so because example1 returns an a. We
don’t know what a is. And, example1 takes in exactly one a. So, the
only possible valid return value is the one and only a we were passed
in! Now, it’s possible to write various Haskell syntax that is different
than precisely what we see above, but any variation is guaranteed to
have exactly the same result (assuming totality). A student answer to
a question like example1 would be the implementation we see above
plus a comment saying that this is the only possible implementation.

As another example, say you have to implement

example2 :: (a -> b) -> [a] -> [b]

(Do you recognize that type?) There are a variety of implementations
of this type—in fact, an infinite number. But, one thing we know for
sure is that if the second argument is an empty list, the result must
also be empty. To see why, think about how we can possibly get a
b. The only way is to use the provided function on an a. But, if the
input list is empty, we have no as! Thus, we can produce no bs, and
the result list must also be empty. A suitable student answer for this
would include an implementation and the comment “If the input list
is empty, the output list must also be empty.” Your answers do not
need to include explanations.

For each exercise, you must include at least one interesting fact
about functions implementing the type. More is better, though!

It is possible that some of the types below have no possible im-
plementations. If that’s the case, make the function’s definition be
error "impossible". Your comment must say why the function is
impossible to write.

Exercise 1

ex1 :: a -> b -> b

Exercise 2

ex2 :: a -> a -> a

Exercise 3

ex3 :: Int -> a -> a

cis 194: homework 4 3

Exercise 4

ex4 :: Bool -> a -> a -> a

Your answer must include information on how many distinct func-
tions inhabit this type.

Exercise 5

ex5 :: Bool -> Bool

Your answer must include information on how many distinct func-
tions inhabit this type.

Exercise 6

ex6 :: (a -> a) -> a

Exercise 7

ex7 :: (a -> a) -> a -> a

Exercise 8

ex8 :: [a] -> [a]

Exercise 9

ex9 :: (a -> b) -> [a] -> [b]

Exercise 10

ex10 :: Maybe a -> a

Exercise 11

ex11 :: a -> Maybe a

Exercise 12

ex12 :: Maybe a -> Maybe a

cis 194: homework 4 4

Binary search trees

A binary search tree is a recursive data stucture frequently used to
store a set—that is, a chunk of data that is easily (and efficiently)
searched and added to. Here is the datatype definition for a binary
search tree in Haskell (included in BST.hs):

data BST a = Leaf | Node (BST a) a (BST a)

That is, a BST a is either a leaf (a placeholder that holds no data)
or an interior node, containing left and right sub-trees and a chunk
of data. The key property of a binary search tree is that the data in
a left sub-tree must all be less than or equal to the data in a node,
and that the data in a right sub-tree must all be greater than or equal
to the data in a node. Search around online for more info if you’re
unfamiliar—there’s plenty out there.

Some of you may have implemented a binary search tree in an
imperative language (such as Java). It’s much easier in Haskell!

Exercise 13 Write the insertion method for a binary search tree:

insertBST :: (a -> a -> Ordering) -> a -> BST a -> BST a

Recall the definition of Ordering (part of the Prelude):

data Ordering = LT | EQ | GT

The first parameter to insertBST is a comparison function that takes
two as and says what their relationship is. The next is the new ele-
ment to insert. Last we have the current tree.

This function is actually quite simple—thinking through the an-
swers to the following questions will essentially write the function
for you:

1. What should you do when inserting into an empty tree (that is, a
Leaf)?

2. What should you do when inserting x into a non-empty tree
whose root node has a value greater than x?

3. What should you do when inserting x into a non-empty tree
whose root node has a value less than x?

It is interesting to note that, because of parametric polymorphism,
every call of insertBST must be accompanied by a comparison oper-
ation. Otherwise, there’s no way to know how to compare elements.
We’ll see a mechanism—called type classes—that will make this less
burdensome.

http://en.wikipedia.org/wiki/Binary_search_tree

cis 194: homework 4 5

Visiting the library

An effective Haskell programmer must know how to use the stan-
dard libraries. The exercises below will require you to read through
the documentation of Data.List, Data.Maybe, and Data.Char to write
succinct solutions. Each of these functions has a simple, one-liner
answer!

Many functions (especially in Data.List) have Eq a => in the
types. We’ll see exactly what this means shortly. For now, we’ll just
say that those functions can only be called on concrete types, like Int

or String, but not unknown types, like a.
In our quest to avoid partial functions, you may want to use these:

safeHead :: [a] -> Maybe a

safeHead [] = Nothing

safeHead (x:_) = Just x

safeTail :: [a] -> Maybe [a]

safeTail [] = Nothing

safeTail (_:xs) = Just xs

Exercise 14 Check to see if a list of strings contains only capitalized
words:

allCaps :: [String] -> Bool

Examples:

allCaps ["Hi","There"] == True

allCaps [] == True

allCaps ["", "Blah"] == False

allCaps ["Hi","there"] == False

Exercise 15 Drop the trailing whitespace from a string:

dropTrailingWhitespace :: String -> String

Examples:

dropTrailingWhitespace "foo" == "foo"

dropTrailingWhitespace "" == ""

dropTrailingWhitespace "bar " == "bar"

Exercise 16 Get the first letter (if it exists) of a list of strings:

cis 194: homework 4 6

firstLetters :: [String] -> [Char]

Examples:

firstLetters ["foo", "bar"] == [’f’,’b’]

firstLetters ["alpha",""] == [’a’]

firstLetters [] == []

firstLetters ["",""] == []

Exercise 17 Render a proper bracketed list given a list of strings:

asList :: [String] -> String

Examples:

asList ["alpha","beta","gamma"] == "[alpha,beta,gamma]"

asList [] == "[]"

asList ["lonely"] == "[lonely]"

	Parametricity
	Binary search trees
	Visiting the library

