
CIS 194: Homework 8
Due Monday, March 18

• Files you should submit: Party.hs, containing a module of the
same name (make sure your file actually has module Party where

at the top!).

Planning the office party

As the most junior employee at Calculators R Us, Inc., you are tasked
with organizing the office Spring Break party. As with all party orga-
nizers, your goal is, of course, to maximize the amount of fun1 which 1 As measured, of course, in Standard

Transnational Fun Units, or STFUs.is had at the party. Since some people enjoy parties more than others,
you have estimated the amount of fun which will be had by each em-
ployee. So simply summing together all these values should indicate
the amount of fun which will be had at the party in total, right?

. . . well, there’s one small problem. It is a well-known fact that
anyone whose immediate boss is also at the party will not have any
fun at all. So if all the company employees are at the party, only the
CEO will have fun, and everyone else will stand around laughing
nervously and trying to look natural while looking for their boss out
of the corner of their eyes.

Your job, then, is to figure out who to invite to the party in order to
maximize the total amount of fun.

Preliminaries

We have provided you with the file Employee.hs, which contains the
following definitions:

-- Employee names are represented by Strings.

type Name = String

-- The amount of fun an employee would have at the party,

-- represented by an Integer number of STFUs

type Fun = Integer

-- An Employee consists of a name and a fun score.

data Employee = Emp { empName :: Name, empFun :: Fun }

deriving (Show, Read, Eq)

Note that the definition of Employee
uses record syntax, which you can read
more about in the Week 8 lecture notes
(it was not covered in lecture but is
provided in the lecture notes as an
additional resource).

It also defines testCompany :: Tree Employee, a small company
hierarchy which you can use for testing your code (although your
actual company hierarchy is much larger).



cis 194: homework 8 2

Finally, Employee.hs defines a type to represent guest lists. The
obvious possibility to represent a guest list would be [Employee].
However, we will frequently want to know the total amount of fun
had by a particular guest list, and it would be inefficient to recom-
pute it every time by adding up the fun scores for all the employees
in the list. Instead, a GuestList contains both a list of Employees
and a Fun score. Values of type GuestList should always satisfy the
invariant that the sum of all the Fun scores in the list of Employees
should be equal to the one, “cached” Fun score.

Exercise 1
Now define the following tools for working with GuestLists:

1. A function

glCons :: Employee -> GuestList -> GuestList

which adds an Employee to the GuestList (updating the cached
Fun score appropriately). Of course, in general this is impossible:
the updated fun score should depend on whether the Employee

being added is already in the list, or if any of their direct subor-
dinates are in the list, and so on. For our purposes, though, you
may assume that none of these special cases will hold: that is,
glCons should simply add the new Employee and add their fun
score without doing any kind of checks.

2. A Monoid instance for GuestList.2 (How is the Monoid instance 2 Note that this requires creating an
“orphan instance” (a type class instance
instance C T which is defined in a
module which is distinct from both the
modules where C and T are defined),
which GHC will warn you about.
You can ignore the warning, or add
{-# OPTIONS_GHC -fno-warn-orphans #-}

to the top of your file.

supposed to work, you ask? You figure it out!)

3. A function moreFun :: GuestList -> GuestList -> GuestList

which takes two GuestLists and returns whichever one of them
is more fun, i.e. has the higher fun score. (If the scores are equal it
does not matter which is returned.)

Exercise 2
The Data.Tree module from the standard Haskell libraries defines

the type of “rose trees”, where each node stores a data element and
has any number of children (i.e. a list of subtrees):

data Tree a = Node {

rootLabel :: a, -- label value

subForest :: [Tree a] -- zero or more child trees

}

Strangely, Data.Tree does not define a fold for this type! Rectify the
situation by implementing



cis 194: homework 8 3

treeFold :: ... -> Tree a -> b

(See if you can figure out what type(s) should replace the dots in
the type of treeFold. If you are stuck, look back at the lecture notes
from Week 7, or infer the proper type(s) from the remainder of this
assignment.)

The algorithm

Now let’s actually derive an algorithm to solve this problem. Clearly
there must be some sort of recursion involved—in fact, it seems that
we should be able to do it with a fold. This makes sense though— I mean, why else would we have had

you do Exercise 2?starting from the bottom of the tree and working our way up, we
compute the best guest list for each subtree and somehow combine
these to decide on the guest list for the next level up, and so on. So
we need to write a combining function

combineGLs :: Employee -> [GuestList] -> GuestList

which takes an employee (the boss of some division) and the optimal
guest list for each subdivision under him, and somehow combines
this information to compute the best guest list for the entire division.

However, this obvious first attempt fails! The problem is that we
don’t get enough information from the recursive calls. If the best
guest list for some subtree involves inviting that subtree’s boss, then
we are stuck, since we might want to consider inviting the boss of the
entire tree—in which case we don’t want to invite any of the subtree
bosses (since they wouldn’t have any fun anyway). But we might be
able to do better than just taking the best possible guest list for each
subtree and then excluding their bosses.

The solution is to generalize the recursion to compute more infor-
mation, in such a way that we can actually make the recursive step.
In particular, instead of just computing the best guest list for a given
tree, we will compute two guest lists:

1. the best possible guest list we can create if we invite the boss (that
is, the Employee at the root of the tree); and

2. the best possible guest list we can create if we don’t invite the boss.

It turns out that this gives us enough information at each step to
compute the optimal two guest lists for the next level up.

Exercise 3
Write a function

nextLevel :: Employee -> [(GuestList, GuestList)]

-> (GuestList, GuestList)



cis 194: homework 8 4

which takes two arguments. The first is the “boss” of the current sub-
tree (let’s call him Bob). The second argument is a list of the results
for each subtree under Bob. Each result is a pair of GuestLists: the
first GuestList in the pair is the best possible guest list with the boss
of that subtree; the second is the best possible guest list without the
boss of that subtree. nextLevel should then compute the overall best
guest list that includes Bob, and the overall best guest list that doesn’t
include Bob.

Exercise 4
Finally, put all of this together to define

maxFun :: Tree Employee -> GuestList

which takes a company hierarchy as input and outputs a fun-maximizing
guest list. You can test your function on testCompany, provided in
Employee.hs.

The whole company

Of course, the actual tree of employees in your company is much
larger! We have provided you with a file, company.txt, containing
the entire hierarchy for your company. The contents of this file were
created by calling the show function on a Tree Employee,3 so you can 3 We don’t recommend actually look-

ing at the contents of company.txt,
assuming that you value your sanity.

convert it back into a Tree Employee using the read function.

Exercise 5
Implement main :: IO () so that it reads your company’s hierar-

chy from the file company.txt, and then prints out a formatted guest
list, sorted by first name, which looks like

Total fun: 23924

Adam Debergues

Adeline Anselme

...

(Note: the above is just an example of the format; it is not the correct
output!) You will probably find the readFile and putStrLn functions
useful.

As much as possible, try to separate out the “pure” computation
from the IO computation. In other words, your main function should
actually be fairly short, calling out to helper functions (whose types
do not involve IO) to do most of the work. If you find IO “infecting”
all your function types, you are Doing It Wrong.


	Planning the office party
	Preliminaries
	The algorithm
	The whole company

