
CIS 194: Homework 4
Due Monday, February 11

What to turn in: you should turn a single .hs (or .lhs) file, which
must type check.

Exercise 1: Wholemeal programming
Reimplement each of the following functions in a more idiomatic

Haskell style. Use wholemeal programming practices, breaking each
function into a pipeline of incremental transformations to an entire
data structure. Name your functions fun1’ and fun2’ respectively.

1. fun1 :: [Integer] -> Integer

fun1 [] = 1

fun1 (x:xs)

| even x = (x - 2) * fun1 xs

| otherwise = fun1 xs

2. fun2 :: Integer -> Integer

fun2 1 = 0

fun2 n | even n = n + fun2 (n ‘div‘ 2)

| otherwise = fun2 (3 * n + 1)

Hint: For this problem you may wish to use the functions iterate

and takeWhile. Look them up in the Prelude documentation to see
what they do.

Exercise 2: Folding with trees
Recall the definition of a binary tree data structure. The height of http://en.wikipedia.org/wiki/

Binary_treea binary tree is the length of a path from the root to the deepest
node. For example, the height of a tree with a single node is 0; the
height of a tree with three nodes, whose root has two children, is 1;
and so on. A binary tree is balanced if the height of its left and right
subtrees differ by no more than 1, and its left and right subtrees are
also balanced.

You should use the following data structure to represent binary
trees. Note that each node stores an extra Integer representing the
height at that node.

data Tree a = Leaf

| Node Integer (Tree a) a (Tree a)

deriving (Show, Eq)

For this exercise, write a function

http://en.wikipedia.org/wiki/Binary_tree
http://en.wikipedia.org/wiki/Binary_tree


cis 194: homework 4 2

foldTree :: [a] -> Tree a

foldTree = ...

which generates a balanced binary tree from a list of values using
foldr.

For example, one sample output might be the following, also visu-
alized at right:

D

E

A

G

H

B

CF

I

J

foldTree "ABCDEFGHIJ" ==

Node 3

(Node 2

(Node 0 Leaf ’F’ Leaf)

’I’

(Node 1 (Node 0 Leaf ’B’ Leaf) ’C’ Leaf))

’J’

(Node 2

(Node 1 (Node 0 Leaf ’A’ Leaf) ’G’ Leaf)

’H’

(Node 1 (Node 0 Leaf ’D’ Leaf) ’E’ Leaf))

Your solution might not place the nodes in the same exact order,
but it should result in balanced trees, with each subtree having a
correct computed height.

Exercise 3: More folds!

1. Implement a function

xor :: [Bool] -> Bool

which returns True if and only if there are an odd number of True
values contained in the input list. It does not matter how many
False values the input list contains. For example,

xor [False, True, False] == True

xor [False, True, False, False, True] == False

Your solution must be implemented using a fold.

2. Implement map as a fold. That is, complete the definition

map’ :: (a -> b) -> [a] -> [b]

map’ f = foldr ...

in such a way that map’ behaves identically to the standard map

function.



cis 194: homework 4 3

3. (Optional) Implement foldl using foldr. That is, complete the
definition

myFoldl :: (a -> b -> a) -> a -> [b] -> a

myFoldl f base xs = foldr ...

in such a way that myFoldl behaves identically to the standard
foldl function.

Hint: Study how the application of foldr and foldl work out:

foldr f z [x1, x2, ..., xn] == x1 ‘f‘ (x2 ‘f‘ ... (xn ‘f‘ z)...)

foldl f z [x1, x2, ..., xn] == (...((z ‘f‘ x1) ‘f‘ x2) ‘f‘...) ‘f‘ xn

Exercise 4: Finding primes
Read about the Sieve of Sundaram. Implement the algorithm us- http://en.wikipedia.org/wiki/Sieve_

of_Sundaraming function composition. Given an integer n, your function should
generate all the odd prime numbers up to 2n + 2.

sieveSundaram :: Integer -> [Integer]

sieveSundaram = ...

To give you some help, below is a function to compute the Carte-
sian product of two lists. This is similar to zip, but it produces all
possible pairs instead of matching up the list elements. For example,

cartProd [1,2] [’a’,’b’] == [(1,’a’),(1,’b’),(2,’a’),(2,’b’)]

It’s written using a list comprehension, which we haven’t talked about
in class (but feel free to research them).

cartProd :: [a] -> [b] -> [(a, b)]

cartProd xs ys = [(x,y) | x <- xs, y <- ys]

http://en.wikipedia.org/wiki/Sieve_of_Sundaram
http://en.wikipedia.org/wiki/Sieve_of_Sundaram

