
Good Haskell Style

All your submitted programming assignments should emerge creatively
from the following style guidelines. Programming is just as much social art
form as it is engineering discipline, and as any artist knows, constraints serve
to enhance rather than quench creativity.

These guidelines will be extended as the semester progresses.

• DO use camelCase for function and variable names.

• DO use descriptive function names, which are as long as they need to
be but no longer than they have to be. Good: solveRemaining. Bad:
slv. Ugly: solveAllTheCasesWhichWeHaven’tYetProcessed.

• DON’T use tab characters. Haskell is layout-sensitive and tabs Mess
Everything Up. I don’t care how you feel about tabs when coding in
other languages. Just trust me on this one. Note this does not mean
you need to hit space a zillion times to indent each line; your Favorite
Editor ought to support auto-indentation using spaces instead of tabs.

• DO try to keep every line under 80 characters. This isn’t a hard and
fast rule, but code that is line-wrapped by an editor looks horrible.

• DO give every top-level function a type signature. Type signatures
enhance documentation, clarify thinking, and provide nesting sites for
endangered bird species. Top-level type signatures also result in better
error messages. With no type signatures, type errors tend to show up
far from where the real problem is; explicit type signatures help localize
type errors.

Locally defined functions and constants (part of a let expression or
where clause) do not need type signatures, but adding them doesn’t
hurt (in particular, the argument above about localizing type errors
still applies).

• DO precede every top-level function by a comment explaining what it
does.

• DO use -Wall. Either pass -Wall to ghc on the command line, or
(easier) put



{-# OPTIONS_GHC -Wall #-}

at the top of your .hs file. All your submitted programs should compile
with no warnings.

• DO, as much as possible, break up your programs into small functions
that do one thing, and compose them to create more complex functions.

• DO make all your functions total. That is, they should give sensible
results (and not crash) for every input.


