
TYPES
CIS 194

EVERYTHING THAT IS SYNTACTICALLY LEGAL, THAT THE
COMPILER WILL ACCEPT, WILL EVENTUALLY WIND UP IN
YOUR CODEBASE. AND THAT'S WHY I THINK STATIC TYPING
IS SO VALUABLE BECAUSE IT CUTS DOWN ON WHAT CAN
MAKE IT PAST THOSE HURDLES THERE.

John Carmack

TYPES

TYPES

A WORLD WITHOUT TYPES

def double(x):
 return 2 * x

Maybe double(5) == 10? Wrong.

How about double(“hello”) == “hellohello”?

Actually the correct answer is (obviously):
double([5, “a”]) == [5, “a”, 5, “a”].

TYPES

HW1 CONTINUED…

{-
Replace `undefined` with your phone number.
-}

phoneNumber = undefined

TYPES

HW1 CONTINUED…

‣ phoneNumber = 2158985000

‣ phoneNumber' = "2158985000"

‣ phoneNumber'' = (2,1,5,8,9,8,5,0,0,0)

‣ phoneNumber''' = [0,0,0,5,8,9,8,5,1,2]

TEXT

HW1 CONTINUED…

{-
Replace `undefined` with your phone number.
-}

phoneNumber :: Int
phoneNumber = undefined

Clearly should be phoneNumber = 2158985000

TYPE ANNOTATIONS

TYPE SIGNATURES

WHAT TYPES HAVE WE SEEN SO FAR?

▸ Int

▸ Char

▸ String

▸ Maybe String

▸ etc.

TYPE SIGNATURES

WHAT TYPES HAVE WE SEEN SO FAR?

favoriteNumber :: Int
favoriteNumber = 194

firstLetterOfName :: Char
firstLetterOfName = head "Palmer"

hello194 :: String
hello194 = hello "194"

githubUsername :: Maybe String
githubUsername = Just "pzp1997"

GENERICS

GENERICS

LENGTH OF A LIST

lengthIntList :: [Int] -> Int
lengthIntList xs =
 if null xs then
 0
 else
 1 + lengthIntList (tail xs)

lengthIntList [1,2,3] —> 3
lengthIntList "abc" —> WON’T COMPILE!

GENERICS

LENGTH OF A LIST

lengthString :: String -> Int
lengthString xs =
 if null xs then
 0
 else
 1 + lengthString (tail xs)

lengthString "abc"—> 3

GENERICS

LENGTH OF A LIST

lengthIntList :: [Int] -> Int
lengthIntList xs =
 if null xs then 0
 else 1 + lengthIntList (tail xs)

lengthString :: String -> Int
lengthString xs =
 if null xs then 0
 else 1 + lengthString (tail xs)

GENERICS

LENGTH OF A LIST

lengthIntList :: [Int] -> Int
lengthIntList xs =
 if null xs then 0
 else 1 + lengthIntList (tail xs)

lengthString :: String -> Int
lengthString xs =
 if null xs then 0
 else 1 + lengthString (tail xs)

GENERICS

LENGTH OF A LIST

length :: [???] -> Int
length xs =
 if null xs then
 0
 else
 1 + length (tail xs)

The ??? could be replaced by ANY type.
How can we use the type system to express that?

GENERICS

ANSWER: DAILY DOUBLE

length :: [a] -> Int

‣ a is a placeholder

‣ a is bound when we apply the function

‣ No restrictions on which types that can be bound to a

‣ b or alexTrebek would work too

GENERICS

WHAT IS BINDING ANYWAY?

Suppose we have a definition

twoOfAKind :: a -> a -> (a, a)
twoOfAKind x y = (x, y)

twoOfAKind 1 2 —> (1, 2)
twoOfAKind 'a' 'b' -> ('a', ‘b')
twoOfAKind 'a' 1 -> WON’T COMPILE! WHY?

GENERICS

APPLY THE ARGUMENTS ONE AT A TIME

twoOfAKind :: a -> a -> (a, a)
twoOfAKind x y = (x, y)

partial = twoOfAKind 'a'

partial' :: Char -> (Char, Char)
partial' y = ('a', y)

partial 1
BUT 1 is not a Char!

PARAMETERIZED
TYPES

PARAMETERIZED TYPES

MAYBE VS. MAYBE INT

maybeAdd mx my =
 if isJust mx && isJust my then
 Just (fromJust mx + fromJust my)
 else
 Nothing

What should the type of maybeAdd be?
How about Maybe -> Maybe -> Maybe?

PARAMETERIZED TYPES

MAYBE VS. MAYBE INT

maybeAdd :: Maybe -> Maybe -> Maybe

But then we could do

maybeAdd (Just 1) (Just “hello”)

which doesn’t make sense…

PARAMETERIZED TYPES

MAYBE VS. MAYBE INT

‣ Knowing that a value is a Maybe is not enough.

‣ We need to be able to specify the type of value stored
inside of the Maybe too.

‣ In other words how can we differentiate between Maybe of
an Int and a Maybe of a String at the type level?!

‣ Solution: Maybe Int

PARAMETERIZED TYPES

BREAKING DOWN MAYBE INT

‣ Maybe is a “type constructor”

‣ Maybe is parameterized by type of value stored inside it

myFavoriteNumber :: Maybe Int
myFavoriteNumber = Just 194

‣ In the case above Int is the parameter to Maybe

myLeastFavoriteNumber :: Maybe a
myLeastFavoriteNumber = Nothing

‣ In the case above the parameter could be anything!

PARAMETERIZED TYPES

SO IS MAYBE A TYPE?

▸ Is Int a type?

▸ Is Maybe Int a type?

‣ How about Maybe by itself?

TYPE OF A
FUNCTION

TYPE OF A FUNCTION

WHAT IS THE TYPE OF A FUNCTION?
▸ Let’s make a type called Function

isEven :: Function
isEven x = x `mod` 2 == 0

▸ Good first attempt

▸ Not a lot of type safety

TYPE OF A FUNCTION

WHAT IS THE TYPE OF A FUNCTION?
▸ We need to add more information to our type

▸ Let’s add type of argument and return value as parameters

▸ Our type is now Function arg ret

isEven :: Function Int Bool
isEven x = x `mod` 2 == 0

TYPE OF A FUNCTION

DYADIC FUNCTIONS
Maybe Function arg1 arg2 ret?

repeatIt :: Function Int String String
repeatIt timesToRepeat snippet = ...

Actually Function arg1 (Function arg2 ret)

repeatIt :: Function Int (Function String String)
repeatIt timesToRepeat snippet = ...

TYPE OF A FUNCTION

SYNTACTIC SUGAR FTW

▸ Function arg ret is not the clearest syntax

▸ Haskell defines an infix type constructor (->) which is
synonymous to Function

▸ Function arg ret becomes arg -> ret

▸ isEven :: Int -> Bool

TYPE OF A FUNCTION

SYNTACTIC SUGAR FTW

▸ Function arg1 (Function arg2 ret) becomes
arg1 -> (arg2 -> ret)

▸ Or since (->) is right associative, arg1 -> arg2 -> ret

▸ repeatIt :: Int -> String -> String

