CIS 194

TYPES



TYPES

John Carmack



TYPES

A WORLD WITHOUT TYPES

def double(x):
return 2 * x

Maybe double(5) == 10? Wrong.
How about double(*“hello”) == “hellohello”?

Actually the correct answer is (obviously):

double([5, “a”]) == [5, “a”, 5, “a”].



TYPES

HW1 CONTINUED. ..

f-
Replace "undefined with your phone number.

-}

phoneNumber = undefined



TYPES

HW1 CONTINUED. ..

» phoneNumber = 2158985000
» phoneNumber' = "2158985000"
» phoneNumber'' = (2,1,5,8,9,8,5,0,0,0)

» phoneNumber''' = [0,0,0,5,8,9,8,5,1,2]



TEXT

HW1 CONTINUED. ..

f-
Replace "undefined with your phone number.

-}

phoneNumber :: Int
phoneNumber = undefined

Clearly should be phoneNumber = 2158985000



TYPE ANNOTATIONS




TYPE SIGNATURES

WHAT TYPES HAVE WE SEEN SO FAR?

» Int

» Char

» String

» Maybe String

» etc.



TYPE SIGNATURES

WHAT TYPES HAVE WE SEEN SO FAR?

favoriteNumber :: Int
favoriteNumber = 194

firstLetterOfName :: Char
firstLetterOfName = head "Palmer"

hellol94 :: String
hellol94 = hello "194"

githubUsername :: Maybe String
githubUsername = Just "pzpl1997"



GENERICS




GENERICS

LENGTH OF A LIST

lengthIntlList :: [Int] -> Int
lengthIntList xs =
1f null xs then
0
else
1 + lengthIntList (tail xs)

lengthIntlList [1,2,3] —> 3
lengthIntList "abc" —> WON'T COMPILE!



GENERICS

LENGTH OF A LIST

lengthString :: String -> Int
lengthString xs =
1f null xs then
0
else
1 + lengthString (tail xs)

lengthString "abc"—> 3



lengthIntList :: [Int] -> Int
lengthIntList xs =

1f null xs then 0

else 1 + lengthIntList (tail xs)

lengthString :: String -> Int
lengthString xs =

1f null xs then 0

else 1 + lengthString (tail xs)



GENERICS

LENGTH OF A LIST

lengthIntList :: [Int] -> Int
lengthIntList xs =

1f null xs then 0

else 1 + lengthIntList (tail xs)

lengthString :: String -> Int
lengthString xs =

1f null xs then 0

else 1 + lengthString (tail xs)



GENERICS

LENGTH OF A LIST

length :: [?77] -> Int
length xs =
1f null xs then
0
else
1 + length (tail xs)

The ?7?? could be replaced by ANY type.
How can we use the type system to express that?



GENERICS

ANSWER: DAILY DOUBLE
length :: [a] -> Int

» ais a placeholder
» ais bound when we apply the function

» No restrictions on which types that can be bound to a

» boralexTrebek would work too



GENERICS

WHAT IS BINDING ANYWAY?

Suppose we have a definition

twoOfAKind :: a -> a -> (a, a)
twoOfAKind x vy = (X, y)

twoOfAKind 1 2 —> (1, 2)
twoOfAKind 'a' 'b' -> ('a', ‘b")
twoOfAKind 'a' 1 -> WON'T COMPILE! WHY?



GENERICS

APPLY THE ARGUMENTS ONE AT A TIME

twoOfAKind :: a -> a -> (a, a)
twoOfAKind x vy = (X, Yy)

partial = twoOfAKind 'a'

partial’' :: Char -> (Char, Char)
partial’' vy = ('a', y)

partial 1
BUT 1 is not a Char!



PARAMEIERIZED
TYPES



PARAMETERIZED TYPES

MAYBE VS. MAYBE INT

maybeAdd mx my =
1f 1sJust mx && 1sJust my then
Just (fromJust mx + fromJust my)
else
Nothing

What should the type of maybeAdd be?
How about Maybe -> Maybe -> Maybe?



PARAMETERIZED TYPES

MAYBE VS. MAYBE INT
maybeAdd :: Maybe -> Maybe -> Maybe
But then we could do

maybeAdd (Just 1) (Just “hello”)

which doesn’t make sense...



PARAMETERIZED TYPES

MAYBE VS. MAYBE INT

» Knowing that a value is a Maybe is not enough.

» We need to be able to specify the type of value stored
inside of the Maybe too.

» In other words how can we differentiate between Maybe of
an Int and aMaybe of a String at the type level?!

» Solution: Maybe Int



PARAMETERIZED TYPES

BREAKING DOWN MAYBE INT

» Maybe is a “type constructor”

» Maybe is parameterized by type of value stored inside it

myFavoriteNumber :: Maybe Int
myFavoriteNumber = Just 194

» In the case above Int is the parameter to Maybe

mylLeastFavoriteNumber :: Maybe a
myLeastFavoriteNumber = Nothing

» In the case above the parameter could be anything!



PARAMETERIZED TYPES

50 IS MAYBE A TYPE?

» Is Int atype?
» IsMaybe Int atype?

» How about Maybe by itself?



TYPE OF A
FUNCTION




TYPE OF A FUNCTION

WHAT IS THE TYPE OF A FUNCTION?

» Let's make a type called Function

1sEven :: Function
1sEven x = X mod 2 ==

» Good first attempt

» Not a lot of type safety



TYPE OF A FUNCTION

WHAT IS THE TYPE OF A FUNCTION?

» We need to add more information to our type
» Let's add type of argument and return value as parameters

» Ourtypeis now Function arg ret

1sEven :: Function Int Bool
1sEven x = x mod 2 ==



TYPE OF A FUNCTION

DYADIC FUNCTIONS

Maybe Function argl arg2 ret?

repeatIt :: Function Int String String
repeatIt timesToRepeat snippet = ...

Actually Function argl (Function arg2 ret)

repeatIt :: Function Int (Function String String)
repeatIt timesToRepeat snippet = ...



TYPE OF A FUNCTION

SYNTACTIC SUGAR FTW

» Function arg retis notthe clearest syntax

» Haskell defines an infix type constructor (->) which is
synonymous to Function

» Function arg ret becomesarg -> ret

» 1sEven :: Int -> Bool



TYPE OF A FUNCTION

SYNTACTIC SUGAR FTW

» Function argl (Function argZ ret) becomes
argl -> (arg2 -> ret)

» Orsince (->) isright associative, argl -> arg2 -> ret

» repeatIt :: Int -> String -> String



