
CIS 194: Homework 7
Due Wednesday, 25 March

Figure 1: The Haskell logo is modelled
after the bind function (>>=) in the
Monad type class

Preliminaries

Just as Haskell Strings are not as efficient as ByteStrings, lists are
not as efficient as Vectors. Before you begin this homework you
should make sure that you have the vector package installed by typ-
ing cabal install vector in your terminal. The Data.Vector mod-
ule is designed to be similar to Data.List so you should see all of
your favorite functions defined there! In order to avoid naming colli-
sions, we import qualified Data.Vector as V. This means that you
need to prefix all function calls with V. For example, V.fromList [1..10]

constructs a Vector from the list [1..10]. We have also imported the
Vector a type as well as a few functions non-qualified. These func-
tions are cons, (!), (!?), and (//). You can look these up on Hoogle
to figure out what they do.

Later in the assignment, we will also use the Control.Monad.Random

module which comes from the MonadRandom package. You will proba-
bly need to install this package by typing cabal install MonadRandom.

Finger exercises

The next few exercises are an opportunity to show off what you’ve
learned about Monads! They are focused on using Vectors and the
Maybe monad.

Exercise 1 Write the liftM function. This function lifts a regular
function into a monad and applies it to an argument in that monad.

liftM :: Monad m => (a -> b) -> m a -> m b

Example: liftM (+1) (Just 5) == Just 6

cis 194: homework 7 2

The Control.Monad module defines many more lifting operations
(ie, liftM2, liftM3,...). Use one of these functions to implement the
function

swapV :: Int -> Int -> Vector a -> Maybe (Vector a)

that takes in two indices and swaps the elements at those indices in
some Vector. This function should use the safe indexing operation
(!?) and not the unsafe one (!). If either of the indices are out of
bounds (ie (!?) returns Nothing), then the result should be Nothing.
You will probably find the (//) function useful.

Example: swapV 0 2 (V.fromList [1, 2, 3]) == Just (V.fromList [3, 2, 1])

Example: swapV 0 2 (V.fromList [1, 2]) == Nothing

Exercise 2 Implement the function mapM that maps a monadic func-
tion across a list:

mapM :: Monad m => (a -> m b) -> [a] -> m [b]

Example: mapM Just [1..10] == Just [1..10]

Now, use mapM to define a function that takes in a list of indices
and a Vector and returns a list of the elements at those indices in the
Maybe monad. If any of the indices don’t exist, the function should
return Nothing. Again, use the safe indexing operator (!?).

getElts :: [Int] -> Vector a -> Maybe [a]

Example: getElts [1,3] (V.fromList [0..9]) == Just [1, 3]

cis 194: homework 7 3

Randomized Algorithms

Randomization is an extremely powerful tool in the field of algo-
rithms. Using randomization, computationally intractable problems
can be accurately approximated and slow algorithms can be made
faster. In this section, we will focus on Las Vegas algorithms. A Las
Vegas algorithm is an algorithm that always returns the correct result
and uses randomization to improve the expected runtime. In other
words, it gambles with computing resources, not with the correctness
of the output.

The problem with randomization is that it is impure; a random-
ized function may return a different result each time it is called. Does
this mean we can’t use randomization in Haskell? Of course not! To
get around this impurity, we will use the randomness (Rnd) monad.

In the same way that IO actions are not actual computations, but
rather descriptions of computations, functions in the Rnd monad are
descriptions of randomized computations. To evaluate a randomized
function, we can use:

evalRandIO :: Rnd a -> IO a

This makes a lot of sense; a value of type Rnd a is pure, but running
it produces a value in the IO monad (which, as we know, is the only
way to get an impure value in Haskell). To get a random value, use
of the following functions:

getRandom :: Random a => Rnd a

getRandomR :: Random a => (a, a) -> Rnd a

The only difference between these two functions is that getRandomR
produces a random value between the two values supplied in the tu-
ple and getRandom produces any value of type a where a is a member
of the Random type class.

cis 194: homework 7 4

Exercise 3 Use the randomness monad to produce a random ele-
ment of a Vector. This function should only return Nothing if the
Vector has length 0.

randomElt :: Vector a -> Rnd (Maybe a)

Exercise 4 Now define the following two functions:

randomVec :: Random a => Int -> Rnd (Vector a)

randomVecR :: Random a => Int -> (a, a) -> Rnd (Vector a)

These functions should produce vectors of the specified length that
are populated with random elements. The elements of randomVec n

can have any value of type a whereas the ones from randomVecR n (lo, hi)

should all be within the specified range. Try to make use of functions
from the Control.Monad module.

Exercise 5 In this exercise you will implement a function that shuf-
fles a Vector. The Fisher-Yates algorithm shuffles the elements of an
array such that each element is equally likely to end up in each po-
sition. The algorithm is defined as follows: for i = n− 1 down to 1,
choose a random j ∈ {0, 1, . . . , i} and swap the elements at positions
i and j. In order to save yourself some hassle, you can use the unsafe
indexing operator (!), but only use it if you are sure that it won’t
fail!

shuffle :: Vector a -> Rnd (Vector a)

Quicksort

Figure 2: Sorting is hard when you
don’t use the right algorithms!

The Quicksort algorithm is a very efficient sorting algorithm that was
invented by Tony Hoare in 1960. The algorithm itself is very simple.
You first choose a pivot, then partition the array into elements that are
less than and greater than the pivot, and finally recurse on the two
resulting sublists. The efficiency of the algorithm depends highly on
the choice of pivot. More on this shortly!

Exercise 6 Before you implement Quicksort, you should implement
a helper function that partitions a Vector around the element at a
given index.

partitionAt :: Ord a => Vector a -> Int -> (Vector a, a, Vector a)

The first argument is the Vector to be partitioned and the second
argument is the index of the pivot. The output is a 3-tuple containing

cis 194: homework 7 5

a Vector of the elements less than the value of the pivot, the value of
the pivot itself, and a Vector of the elements greater than or equal to
the pivot in that order.

Example:

partitionAt (V.fromList [5, 2, 8, 3, 6, 1]) 3 ==

(V.fromList [2, 1], 3, V.fromList [5, 8, 6])

Example:

partitionAt (V.fromList [1, 6, 4, 7, 2, 4]) 2 ==

(V.fromList [1, 2], 4, V.fromList [6, 7, 4])

Exercise 7 A naïve Quicksort implementation picks the first element
in the array to be the pivot every time. In the worst case, this causes
the array to be partitioned into a segment of size 0 and a segment of
size Θ(n) causing the runtime to be O(n2).

An implementation of Quicksort that uses the first element as the
pivot to sort lists is provided for you. Your job is to implement the
same algorithm for Vectors instead of lists.

qsort :: Ord a => Vector a -> Vector a

Note that Vector is a monad! That means that you can use Monad
Comprehensions to construct a Vector in the same way they are used
for lists!

Exercise 8 We can improve the expected runtime of Quicksort from
O(n2) to O(n log n) by making one simple modification. Instead of
choosing the first element as the pivot each time, we will choose a
random element to be the pivot. Intuitively, the reason why this is so
effective is because there is a 50% chance that a random element has
rank greater than n

4 and less than 3n
4 , therefore with good probabil-

ity the array will be split into roughly even segments. Implement
randomized Quicksort:

qsortR :: Ord a => Vector a -> Rnd (Vector a)

Remember that you implemented the partitionAt function! This
function should be useful here.

We know that randomized Quicksort is theoretically faster than
deterministic Quicksort, but is it really faster in practice? Try sorting
V.fromList (reverse [1..10000]), the integers from 1 to 10,000 in
reverse order, using both implementations:

cis 194: homework 7 6

> let v = V.fromList $ reverse [1..10000]

> qsort v

> evalRandIO $ qsortR v

Did you notice a difference? On my machine, the deterministic
algorithm took over a minute and the randomized one was instanta-
neous!

Exercise 9 There is a randomized algorithm for selection that is very
closely related to Quicksort. The purpose of this algorithm is to select
the element with rank i in an unsorted array. For example, select 0 v

selects the minimum element, select (n - 1) v selects the maxi-
mum element, and select (n ‘div‘ 2) v selects the median.

The naïve implementation of this algorithm would simply sort
the array and then return the element at position i. However, sorting
is overkill here since all we care about is a single element. A better
version uses the same divide and conquer approach that Quicksort
uses and runs in expected linear time. First, you choose a random
pivot p and partition the array around it. This gives you left and right
sub-arrays L and R. If i < |L|, then you know that the element you
are looking for is in L, so you should recurse on L. If i = |L|, then p
must have rank i. Finally, if i > |L|, the element must be in R, so you
should recurse on R searching for rank i − |L| − 1. Implement the
function:

select :: Ord a => Int -> Vector a -> Rnd (Maybe a)

This function selects the element of rank i by the algorithm de-
scribed above. Notice that this function returns an Rnd (Maybe a).
This is because the rank that is asked for may be outside the bounds
of the Vector. In this case, you should return Nothing.

Playing Cards

The Cards.hs module defines several data types to represent playing
cards. The code in this module is mostly boilerplate, but you should
familiarize yourself with the Deck and Card types before you start the
next few exercises.

Exercise 10 It would be useful to be able to get a deck that contains
all of the cards grouped by suit (Spade, Heart, Club, Diamond), and
arranged from Two to Ace. Implement:

allCards :: Deck

cis 194: homework 7 7

which is simply a Vector of Cards arranged in the order stated
above (don’t worry, this is much easier than allCodes from HW02).
You should implement allCards as a Monad Conprehension. You
will probably find suits and labels in the Cards module useful.

Now that you have allCards, write:

newDeck :: Rnd Deck

This should return a new Deck that contains all of the cards from
allCards, but in a random order. Remember that you already imple-
mented shuffle!

Exercise 11 We also need some sort of uncons’ing operation for
Decks. That is, a function that takes in a Deck and gives you the head
and tail (since we can’t pattern match on Vector like we can with
lists). Implement the function:

nextCard :: Deck -> Maybe (Card, Deck)

This function takes in a Deck and returns the head and tail of the
Deck in the Maybe monad. If the Deck is empty, it should return
Nothing.

Exercise 12 In many card games, we need to draw multiple cards at
once from a deck. Implement the function:

getCards :: Int -> Deck -> Maybe ([Card], Deck)

This function should draw n cards from the given Deck where n
is the first input to the function. Try to make use of nextCard and
the Maybe monad in order to avoid pattern matching on Maybe. If
the Deck has fewer than n Cards remaining then this function should
return Nothing.

Exercise 13 Relax! This isn’t a real exercise. Now that you have im-
plemented some operations on the Deck type, you can have some fun.
Compile this file with GHC by typing GHC HW07.hs -main-is HW07

and then run the resulting executable.

Figure 3: Don’t put all your eggs in one
basket!

In the spirit of the Las Vegas algorithms you implemented earlier,
this is a text-based War game with betting. Each round, you place
a bet and then you and the computer both draw a card from the
deck. Whoever has a higher card wins. If there is a tie, then each
player draws 3 more cards and the last card that each player draws is
compared.

The game ends when you either run out of money, the deck is
empty, or you choose to leave. Have fun, and gamble responsibly!

	Preliminaries
	Randomized Algorithms
	Playing Cards

