
CIS 194: Homework 5
Due Wednesday, 25 February, 2015

Preface

Setup

You will need two packages that are not part of Haskell’s standard
library for this assignment. They are aeson and text. You can install
these with cabal update; cabal install aeson text.1 If you have 1 The cabal update part is to make sure

you download the most recent versions
of these packages.

GHCi open, you will need to restart GHCi to use these downloaded
libraries.

JSON files

This homework includes parsing and then querying information
stored in a JSON file. JSON is a standardized data interchange format
that is easy to read and easy to write. See json.org for the details,
but you won’t need to know about details for this assignment. In-
stead, the aeson library does all the work for you!

What you do have to worry about is making sure that your Haskell
program can find your JSON files. Putting the files in the same direc-
tory as your HW05.hs file is a great start, but it’s not always enough. If
you’re having trouble getting your code to find your file, and you’re
using GHCi, try running :!pwd. That will print out the current direc-
tory GHCi thinks it’s in. (The :! prefix allows you to run arbitrary
shell commands within GHCi.) If the JSON files aren’t there, either
move it there, or use :cd to move GHCi.2 2 :cd is a GHCi command. The missing

! is intentional!

String theory

Haskell’s built-in String type is a little silly. Sure, it’s programmati-
cally convenient to think of Strings as lists of characters, but that’s a
terrible, terrible way to store chunks of text in the memory of a com-
puter. Depending on an application’s need, there are several other
representations of chunks of text available. This assignment will need
a representation called ByteString.

The ByteString library helpfully (?) uses many of the same names
for functions as the Prelude and Data.List. If you just import Data.ByteString,
you’ll get a ton of name clashes in your code. Instead, we use import qualified ... as BS,
which means that every use of a ByteString function (including op-
erators) or type must be preceded by BS. Thus, to get the length of a
ByteString, you use BS.length.

json.org

cis 194: homework 5 2

ByteStrings come in several flavors, depending on whether they
are lazy or strict and what encoding they use internally. For this
assignment we will use lazy ByteStrings.

When working with non-String strings, it is still very handy to
use the "..." syntax for writing literal values. So, GHC provides
the OverloadedStrings extension. This works quite similarly to
overloaded numbers, in that every use of "blah" becomes a call to
fromString "blah", where fromString is a method in the IsString

type class. Values of any type that has an instance of IsString can
then be created with the "..." syntax. Of course, ByteString is in
the IsString class, as is String.

A consequence of OverloadedStrings is that sometimes GHC
doesn’t know what string-like type you want, so you may need
to provide a type signature. You generally won’t need to worry
about OverloadedStrings as you write your code for this assign-
ment, but this explanation is meant to help if you get strange error
messages. If you want to use OverloadedStrings in GHCi just type
:set -XOverloadedStrings.

Trouble at Haskell Bank

Haskell Bank is in trouble! Someone hacked in to their system
by exploiting a careless use of unsafePerformIO3! Haskell Bank has 3 Those fools should have been using

safe Haskell!since secured their system, however the perpetrator was able to initi-
ate a bunch of bogus transactions between customers. You have been
hired to figure out who hacked Haskell Bank and which transactions
need to be reversed so that all of the customers can get their money
back.

cis 194: homework 5 3

Luckily, you were able to recover some files that contain clues as to
who hacked Haskell Bank. These files are contained in clues.zip. In
the following exercises, you will extract data from these files and use
the clues to catch the criminal.

Exercise 1 The criminal kept a list of the transaction IDs that he
initiated. Unfortunately the list is encrypted using a variant of the
Vigenère cipher. The criminal encoded the encryption key in an
adorable dog photo4, dog.jpg. Some of the bytes in the image have 4 How dare he!

been XOR’ed with a secret message. In order to extract the message,
all you need to do is pairwise XOR the bytes of the encoded image
with the bytes of the original image and filter out all of the bytes
with value 0. After a quick Google search, you were able to find the
original image, dog-original.jpg. Now, implement the function:

getSecret :: FilePath -> FilePath -> IO ByteString

That takes in the paths to the original and modified files, reads
them in as ByteStrings, and then outputs the secret that was en-
coded in the image. You will need to use the xor function in the
Data.Bits module. Remember that FilePath is just a synonym for
String!

Exercise 2 Now that you have the encryption key, you can decrypt
the list of fake transaction IDs. This list is contained in victims.json.enc.
The data is encrypted using a scheme similar to the Vigenère cipher.
To decrypt it, simply pairwise XOR the ciphertext with the key. You
will have to repeat the key because it is much shorter than the cipher-
text. Implement the function:

decryptWithKey :: ByteString -> FilePath -> IO ()

This function should read in the encrypted file, decrypt it using
the key, and then write it back to another file. This ByteString is
the key and the FilePath is the path to the file that will be writ-
ten (it does not have to exist). The encrypted file should have the
same path, but with ".enc" appended to the end. For example, call-
ing decryptWithKey key "victims.json" should decrypt the file
victims.json.enc and write the result to the file victims.json.

Exercise 3 You now have a list of all the IDs of the transactions that
the criminal initiated, but this doesn’t tell you anything about who
the criminal is or how much money he stole. Luckily, Haskell Bank
provided you with a list of all the transactions that took place during

cis 194: homework 5 4

the time that the hacker was in their system. This list is encoded in
JSON format and can be found in the file transactions.json5. 5 Thankfully, Haskell Bank gave you the

data unencryptedHaskell Bank has also provided you with the parsing module
that they use to convert data between Haskell datatypes and JSON
ByteStrings6. This module uses the Aeson parsing library and can 6 Seriously, these guys are so helpful

be found in the file Parser.hs. Two functions are exported:

encode :: ToJSON a => a -> ByteString

decode :: FromJSON a => ByteString -> Maybe a

The file also defines FromJSON and ToJSON instances for the Transaction

datatype and instances for [Transaction] are provided for free by
the Aeson library. This means that you can use decode to parse the
list of transactions in transactions.json. The data in victims.json

is just a list of strings. Aeson knows how to parse this without a spe-
cial instance. We can therefore use one polymorphic function to parse
both of these files. Define the function:

parseFile :: FromJSON a => FilePath -> IO (Maybe a)

This function should take in a path to a JSON file and attempt to
parse it as a value of type a. Note: if you want to test this in GHCi,
you will need to tell it what the output type should be. For example,
parseFile "victims.json" will return Nothing, but
parseFile "victims.json" :: IO (Maybe [TId]) will give you what
you want.

Exercise 4 You now have the ability to parse your JSON files, so
you can start looking for clues! The first step is to isolate the bad
Transactions. Implement the function:

getBadTs :: FilePath -> FilePath -> IO (Maybe [Transaction])

This function takes in the path to the victims list and the path to the
transaction data (in that order) and returns only those Transactions
that occur in the victim list.

Exercise 5 Now that you have decrypted and parsed all of the data,
it’s time to do some detective work. In order to figure out who the
bad guy is, you have to track the flow of money resulting from the
bad transactions. There is a very easy way to do this! For every
name, simply keep track of how much money that person has gained
(or lost) as a result of the bad transactions.

You will need some way of associating people (Strings) with
amounts of money (Integers). The do this efficiently, you should use
the Data.Map.Strict module. Using this data structure, implement
the function:

cis 194: homework 5 5

getFlow :: [Transaction] -> Map String Integer

Example:

let ts = [Transaction { from = "Haskell Curry"

, to = "Simon Peyton Jones"

, amount = 10

, tid = "534a8de8-5a7e-4285-9801-8585734ed3dc"

}]

in getFlow ts == fromList [("Haskell Curry", -10)

, ("Simon Peyton Jones", 10)

]

Note: The Data.Map.Strict module has been imported qualified
meaning that you need to to prefix everything in the module with
Map. For example, the empty map is Map.empty.

Exercise 6 With a Map containing information about they flow of
money, you can easily figure out who the criminal is; he is the person
that got the most money. Write the function:

getCriminal :: Map String Integer -> String

This function should take in the flow Map and return the name of the
person who got the most money.

Exercise 7 In order to give everyone their money back, Haskell
Bank has requested that you use the flow information to generate a
new list of Transactions that will undo the money transfer initiated
by the hacker. In an attempt to cover his tracks, the hacker moved
money through intermediate accounts, he did not just dump it all
into his own account. Reversing all of these transactions will result
in many more transactions than are necessary. Instead you should
implement the following algorithm7: 7 While this algorithm does not al-

ways yield the optimum number of
transactions, it is guaranteed to only
yield O(n) transactions where n is the
number of people. This is quite good
considering that there could have been
arbitrarily many transactions initially.

• Separate the people into payers and payees; ie, people who ended
up with extra money and people who ended up at a loss.

• Sort both groups in descending order. The payers who owe the
most and the payees who are owed the most should come first.
You will likely find the sortBy function in the Data.List module
helpful for this stage.

• Iterate over the payers and payees in parallel. For each pair, make
a new Transaction where the payer pays the payee the minimum
between how much the payer owes and how much the payee is

cis 194: homework 5 6

owed. Deduct this amount from both, remove anyone who has
completely paid his/her debt or has been completely paid off, and
repeat.

Implement this algorithm as the function:

undoTs :: Map String Integer -> [TId] -> [Transaction]

The first argument is the flow map and the second argument is
a list of new transaction IDs that you should use when creating
new Transactions. Haskell Bank has kindly provided you with
a list of fresh transaction IDs that you can use when creating new
Transactions8. You can load this list in for testing, but for now it will 8 Wow, is there anything they won’t do?

be sufficient to use (repeat "") as your ID list.

Exercise 8 In order to deliver your findings back to Haskell Bank,
you need to be able to write Transaction data back in to JSON for-
mat. Implement the function:

writeJSON :: ToJSON a => FilePath -> a -> IO ()

Exercise 9 Now it is time to put everything together! The main

function has been defined for you so that you can compile this file
into an executable that will automate the entire mystery solving
process. In Haskell, main has type:

main :: IO ()

This is different than other languages where the main function takes
in argc and argv parameters. In Haskell, if you want to get com-
mand line arguments, you have to use the getArgs function in the
System.Environment module. The executable will take in the paths
to the original dog photo, the altered dog photo, the transactions
file, the decrypted victim list (even if it hasn’t been created yet),
the new ID list, and the desired output file in that order as com-
mand line arguments. If these arguments are not given, they are
defaulted to be the files supplied in clues.zip. The output by default
is new-transactions.json.

The program extracts the encryption key from the dog picture,
decrypts the victim list and writes it to a new file, writes the new
transactions to a JSON file, and prints the name of the hacker.

Because your homework is written in a module that is not called
Main, you will have to use a compiler flag to tell GHC that it should
generate an executable. Type ghc HW05.hs -main-is HW05 to com-
piler your program. The resulting executable should be called HW05.
Finally, run the executable to discover who hacked Haskell Bank!

	Preface
	Trouble at Haskell Bank

