
CIS 194: Homework 4
Due Wednesday, February 18, 2015

What is a Number?

This may sound like a deep, philosophical question, but the Haskell
type system gives us a simple way to answer it. A number is any
type that has an instance of the Num type class. Let’s take a look at the
definition of the Num type class as defined in the Haskell Prelude:

class Num a where

(+), (-), (*) :: a -> a -> a

negate :: a -> a

abs :: a -> a

signum :: a -> a

fromInteger :: Integer -> a

So according to Haskell, a number is simply anything that can be
added, subtracted, multiplied, negated, and so on1. The Haskell 1 Notice that division is not included

in the Num type class. Division is pur-
posely left out because it is defined
differently for integral and floating
point types

Prelude has a bunch of built in Num instances that we are already
familiar with. These include the usual suspects: Int, Integer, Float,
and Double. But the fun doesn’t end there. We are free to define our
own numbers as long as we can come up with meaningful definitions
for the basic numeric operations.



cis 194: homework 4 2

Polynomials

Can a polynomial be a number? Sure! Why not? Polynomials can be
added, subtracted, and multiplied just like any other number. In this
homework, you will write a Num instance for a polynomial type.

Before we begin, let’s define the representation of polynomials
that we will be using in this assignment. A polynomial is simply
a sequence of terms, and each term has a coefficient and a degree.
For example, the polynomial x2 + 5x + 3 has three terms, one of
degree 2 with coefficient 1, one of degree 1 with coefficient 5, and
one of degree 0 with coefficient 3. In Haskell, we will avoid explicitly
specifying the degrees of terms by representing a polynomial as a list
of coefficients, each of which has degree equal to its position in the
list. We will leave the type of the coefficients to be polymorphic since
we may want to have coefficients that are Ints, Doubles, etc2. 2 There are some applications in Cryp-

tography that use boolean polynomials.
Our Haskell representation can even
support that!

newtype Poly a = P [a]

In this representation, the polynomial x2 + 5x + 3 would be written
as P [3, 5, 1].

Exercise 1 It would be really nice if GHCi could understand that x
is the polynomial f (x) = x. Well, it can; we just have to give it a little
help. Define the value:

x :: Num a => Poly a

To be the Haskell representation of the polynomial x, ie the degree 1

polynomial with coefficient 1.

Exercise 2 Notice that our Poly a type does not derive Eq or Show.
There is a good reason for this! The default instances of these type
classes do not really work the way we would want them to.

In this exercise you will write an instance of the Eq type class for
Poly a. If we had derived this instance, Haskell would have simply
compared the lists inside the P data constructor for equality. Think
about why this is not good enough. When might two Poly as be
equivalent, but their list representations are not?

Implement the (==) function. Remember that we do not have to
explicitly implement the (/=) function; it has a default implementa-
tion in terms of (==).

Example: P [1, 2, 3] == P [1, 2, 3]

Example: P [1, 2] /= P [1, 2, 3]



cis 194: homework 4 3

Exercise 3 The default instance of Show simply displays values the
way they are written in Haskell. It would be much nicer if a Poly a

like P [1, 2, 3] could be displayed in a more human readable way,
like 3x^2 + 2x + 1. This will make it much easier to reason about
your code throughout the rest of the assignment. A complete in-
stance of the Show type class will have the following features:

• Terms are displayed as cx^e where c is the coefficient and e is the
exponent. If e is 0, then only the coefficient is displayed. If e is 1

then the format is simply cx.

• Terms are separated by the + sign with a single space on each side

• Terms are listed in decreasing order of degree

• Nothing is displayed for terms that have coefficient 0 unless the
polynomial is equal to 0.

• No coefficient is displayed for a term if the coefficient is 1, unless
the degree is 0, ie x instead of 1x.

• No special treatment is necessary for terms that have negative
coefficients. For example, 2x^2 + -3, is the correct representation
of 2x2 − 3.

Implement the show function according to this specification.

Example: show (P [1, 0, 0, 2]) == "2x^3 + 1"

Example: show (P [0, -1, 2]) == "2x^2 + -x"

Exercise 4 Now we will define addition for the Poly a type. Ad-
dition for polynomials is fairly simple, all we have to do is add the
coefficients pairwise for each term in the two polynomials. For exam-
ple (x2 + 5) + (2x2 + x + 1) = 3x2 + x + 6.

It is considered good style to define significant functions outside of
a type class instance. For this reason, you will write the function plus

that adds two values of type Poly a:

plus :: Num a => Poly a -> Poly a -> Poly a

Notice that the type signature for plus has the constraint that a
has a Num instance. This means that we can only add polynomials
that have numeric coefficients3. Since a must be a Num, you can use all 3 So we will be able to add polynomials

of polynomials once our Num instance is
defined.

of the usual Num functions (ie, (+)) on the coefficients of the polyno-
mial.

Example: P [5, 0, 1] + P [1, 1, 2] == P [6, 1, 3]

Example: P [1, 0, 1] + P [1, 1] == P [2, 1, 1]



cis 194: homework 4 4

Exercise 5 Remember FOIL4 from high school algebra class? It is 4 FOIL (First Outer Inner Last) is a
mnemonic for how to multiply binomi-
als

coming back to haunt you.
In this exercise you will implement polynomial multiplication. To

multiply two polynomials, each term in the first polynomial must
be multiplied by each term in the second polynomial. The easiest
way to achieve this is to build up a [Poly a] where each element
is the polynomial resulting from multiplying a single coefficient in
the first polynomial by each coefficient in the second polynomial.
Since the terms do not explicitly state their exponents, you will have
to shift the output before multiplying it by each consecutive coef-
ficient. For example P [1, 1, 1] * P [2, 2] will yield the list
[P [2, 2], P [0, 2, 2], P [0, 0, 2, 2]]. You can then simply
sum this list.

Haskell’s built in sum function is written in terms of (+), but also
uses the numeric literal 0. If you would like to use sum then you
will have to implement the fromInteger function in the Num type
class instance for Poly a first (you will do this in the next exercise
anyway). If you want, you can also use foldr (+) (P [0]) in place
of sum until you implement fromInteger.

Implement the function:

times :: Num a => Poly a -> Poly a -> Poly a

Example: P [1, 1, 1] * P [2, 2] == P [2, 4, 4, 2]

Exercise 6 Now it is time to complete our definition of the Num

instance for polynomials. The (+) and (*) functions are already filled
in for you using your implementations from the previous exercises.
All you need to do is implement two more functions.

The first function you will implement is negate. This function
should return the negation of a Poly a. In other words, the result
of negating all of its terms. Notice that (-) is missing from our Num
instance declaration. This is because the Num type class has a default
implementation of (-) in terms of (+) and negate, so we don’t have
to implement it from scratch!

negate :: Num a => Poly a -> Poly a

Example: negate (P [1, 2, 3]) == P [-1, -2, -3]

Next, implement fromInteger. This function should take in an
Integer and return a Poly a. An integer (or any other standard
number for that matter) can simply be thought of as a degree 0 poly-
nomial. Remember that you also have convert the Integer to a value
of type a before you can use it as a coefficient in a polynomial!



cis 194: homework 4 5

fromInteger :: Num a => Integer -> Poly a

The Num type class has two more functions that do not really make
sense for polynomials5. These functions are abs and signum. We will 5 Maybe polynomials aren’t numbers

after allleave these as undefined since the absolute value of a polynomial is
not a polynomial and polynomials do not really have have a sign.

Using Polynomials

Now that we have defined the Num instance for polynomials, we can
stop using coefficient list syntax. In Haskell, the polynomial x2 +

5x + 3 can be written as x^2 + 5*x + 3. This is because the values
x, 5, and 3 are all valid values of type Poly Int and we defined (+)

and (*) as part of the Num instance for polynomials. Note how we
can use (^) for exponentiation even though we did not define it.
In Haskell, (^) is defined in terms of (*), so we get it for free after
implementing the Num instance.

Exercise 7 All this time we have been talking about adding and
multiplying polynomials, but we have never said anything about
evaluating them! Define the function applyP that applies a Poly a to
a value of type a.

Example: applyP (x^2 + 2*x + 1) 1 == 4

Example: applyP (x^2 + 2*x + 1) 2 == 9

Exercise 8 We have already seen that we can write sensible in-
stances of Eq, Show, and Num for polynomials. Another useful oper-
ation that we can perform on polynomials is differentiation. How-
ever, polynomials are not the only type of mathematical function
that we can take derivatives of. For this reason we will define a new
Differentiable type class.

class Num a => Differentiable a where

deriv :: a -> a

nderiv :: Int -> a -> a

The two functions in the Differentiable type class are deriv (the
first derivative) and nderiv (the nth derivative) of the input. Instances
of this type class should obey the following laws:

• ∀n> 0, nderiv (n - 1) (deriv f) == nderiv n f

• ∀n> 0, deriv (nderiv (n - 1) f) == nderiv n f

We can provide a default implementation of nderiv in the type class
definition for Differentiable that is written in terms of deriv. The



cis 194: homework 4 6

value of nderiv n f should be equal the result of applying the deriv

function n times6. Implement the nderiv function. 6 Is there a more efficient way to do
this?

nderiv :: Differentiable a => Int -> a -> a

Note: you will probably not be able to test this until you complete the
next exercise.

Exercise 9 Now that we have defined the Differentiable type
class, you can create an instance of Differentiable for the type
Poly a. All you need to do is fill in the definition of the deriv func-
tion since a default implementation of nderiv has already been sup-
plied.

deriv :: (Num a, Enum a) => Poly a -> Poly a

In case you are rusty on calculus, here is a recap of the differentiation
rules for polynomials. The derivative of a term cxe is simply ce · xe−1.
The derivative of a sequence of terms is simply the sum of their
individual derivatives.

Example: deriv (x^2 + 3*x + 5) == 2*x + 3


	What is a Number?

