
CIS 194: Homework 2
Due Wednesday, February 4

Be sure to write functions with exactly the specified name and
type signature for each exercise (to help us test your code). You may
create additional helper functions with whatever names and type
signatures you wish.

You are allowed (and encouraged) to use functions in the Data.List

standard library. You can find a list of these functions at http://
hackage.haskell.org/package/base-4.7.0.1/docs/Data-List.html.
The type signatures tell you much about what these functions do.
To experiment with them, just say import Data.List in GHCi and
start trying out expressions. Remember that a String is just a list of
characters (that is, a [Char]), and so provides conveniently-written
test data.

You will see that some of the type signatures have something like
Eq a => appearing in them. For now, completely ignore this bit of the
type signature, called a typeclass constraint. You’ll learn much more
about these constraints later.

Mastermind

Figure 1: A typical Mastermind game
board

Mastermind is a two-player code breaking game. One player is
the codemaker and the other player is the codebreaker. At the start of
the game, the codemaker chooses a secret code comprised of four
colored pegs. Each peg is one of six colors: red, green, blue, yellow,
orange, or purple. The codebreaker must figure out the code in as
few turns as possible. Each turn, the codebreaker guesses the secret
code. The codemaker then tells the codebreaker how many pegs
in his guess are exact matches (the color appears in the same place
in the secret code) and how many are non-exact matches (the color

http://hackage.haskell.org/package/base-4.7.0.1/docs/Data-List.html
http://hackage.haskell.org/package/base-4.7.0.1/docs/Data-List.html


cis 194: homework 2 2

appears in a different position in the secret code. More information
about the history and rules of Mastermind are available here http:

//en.wikipedia.org/wiki/Mastermind_(board_game).
In this section, you will implement an algorithm that plays Mas-

termind. We will be using some type definitions to make this work
nicely. Please download the HW02.hs file (linked from the “Lectures”
page) and edit that file. Once again, you are encouraged to use func-
tions from the Data.List module in order to make your code cleaner.

Exercise 1 In this exercise you will implement a function that re-
turns the number of exact matches between the secret code and the
codebreaker’s guess.

exactMatches :: Code -> Code -> Int

Example: exactMatches [Red, Blue, Green, Yellow] [Blue, Green, Yellow, Red] == 0

Example: exactMatches [Red, Blue, Green, Yellow] [Red, Purple, Green, Orange] == 2

Exercise 2 Now you will write a function that returns the number
of total matches between the secret code and the guess. This is a little
bit more complicated than finding exact matches because we have
to take in to account duplicate colors. For example, the sequences
[Red, Red, Blue, Blue] and [Red, Red, Green, Green] only have
2 matches even though both of the Red pegs in the secret match both
of the Red pegs in the guess. For this reason, we can’t just scan the
first list and count the occurences of each element in the second list.
Instead, we will count the number of times that each peg appears in
both lists and sum the minimum values for each color. In the exam-
ple above, Red and Blue both occur twice and all of the other colors
never appear in the first list and Red and Green occur twice in the sec-
ond list. The number of matches is therefore 2 since Red occurs twice
in both lists and all the other colors are not in both of the lists.

Before you can count the number of matches, you should imple-
ment the helper function:

countColors :: Code -> [Int]

This function takes in a Code and returns a list containing the
numbers of times that each color in the list colors appears in the
Code. The counts should appear in the same order that they occur in
the list colors. As a sanity check, output should always have length 6

and the sum of all the entries should be equal to length Code.

http://en.wikipedia.org/wiki/Mastermind_(board_game)
http://en.wikipedia.org/wiki/Mastermind_(board_game)
http://www.cis.upenn.edu/~cis194/extras/02-lists/HW02.hs


cis 194: homework 2 3

Example: countColors [Red, Blue, Yellow, Purple] == [1, 0, 1, 1, 0, 1]

Example: countColors [Green, Blue, Green, Orange] == [0, 2, 1, 0, 1, 0]

Now you are ready to implement the main function:

matches :: Code -> Code -> Int

Example: matches [Red, Blue, Yellow, Orange] [Red, Orange, Orange, Blue] == 3

Exercise 3 A Move is a new datatype that is constructed with a Code

and two Ints. The first Int is the number of exact matches that the
Code has with the secret and the second Int is the number of non-
exact matches 1. Implement the function: 1 Note that this value is slightly dif-

ferent than the one you calculated in
Exercise 2, but it is relatedgetMove :: Code -> Code -> Move

The first Code is the secret, the second Code is guess, and the out-
put is the resulting Move.

Example: getMove [Red, Blue, Yellow, Orange] [Red, Orange, Orange, Blue] ==

Move [Red, Orange, Orange, Blue] 1 2

Exercise 4 We will now define a concept that will be important
in playing the Mastermind game. This is the concept of consistency;
we say that a Code is consistent with a Move if the Code could have
been the secret that generated that move. In other words, if the guess
inside the Move has the same number of exact and non-exact matches
with the provided Code as it did with the actual secret, then the Code

is consistent with the Move. Define the function:

isConsistent :: Move -> Code -> Bool

Example: isConsistent (Move [Red, Red, Blue, Green] 1 1) [Red, Blue, Yellow, Purple] == True

Example: isConsistent (Move [Red, Red, Blue, Green] 1 1) [Red, Blue, Red, Purple] == False

Exercise 5 Now that we have the concept of consistency, we can
filter a list of Codes to only contain those that are consistent with a
given Move. This will be useful to us since our game solver will start
with a list of all possible codes and gradually filter the list based
on each new move until there is only one code left. Implement the
function:



cis 194: homework 2 4

filterCodes :: Move -> [Code] -> [Code]

Exercise 6 As mentioned in Exercise 5, the final algorithm will start
with a list of all possible codes and filter out the inconsistent ones.
In order to do this, we first need to be able to generate a list of all
the codes, ie all length n combinations of the 6 colors. In general,
Mastermind games use codes of length 4, however in theory the code
could be any length. We have not yet made any assumptions about
the lengths of the codes, so why start now? Your function should
take in a length2 and return all Codes of that length: 2 Haskell’s type system is strong

enough to encode the length of a list in
its type, however it uses an advanced
feature of Haskell called Generalized
Algebraic Datatypes which is beyond
the scope of this homework. Using
this feature, we could write allCodes

without giving the length as an input.

allCodes :: Int -> [Code]

Hint: This exercise is a bit tricky. Try using a helper function that
takes in all the codes of length n − 1 and uses it to produce all codes
of length n. You may find the concatMap function helpful.

Exercise 7 We are now finally ready to write our Mastermind
solver! There are many algorithms to solve a game of Mastermind,
but most of them work in roughly the same way; start with all of the
codes and keep making guesses until only one possible code remains.
The tricky bit is actually how you choose your guesses. In this exer-
cise, you will implement a fairly dumb algorithm that keeps track of
the remaining consistent Codes in a list and always chooses the first
element in the list as the next guess.

Is this algorithm guaranteed to converge to a single, correct an-
swer? Yes! In fact, there is a simple one-line proof3. Every guess is 3 “One-line proof” is a term used by

CIS and math professors to signify that
a proof is so trivial that it can fit on to
one line. In fact, any proof can fit on to
one line if enough details are omitted.

either correct or incorrect. If it is correct, then the game is over, and
if it is incorrect, then it will be filtered out. So, at least one Code is
filtered out every round, and there are a finite number of Codes there-
fore the game will end in a finite number of rounds.

Your solver function should take in a secret Code and output a
list of Moves that the computer used as clues to figure out the secret.
Always start by guessing [Red, Red, Red, ..., Red]. This will
make it easier for us to test your outputs.

solve :: Code -> [Move]

You will most likely need to write a helper function in order for
this to work correctly.

Exercise 8 (Optional) In the previous exercise you implemented
a relatively dumb algorithm for Mastermind. We proved that this
algorithm will terminate after a finite number of turns, however in a



cis 194: homework 2 5

real game, you would want to choose your guesses more carefully
in order to minimize the number of turns it takes to guess the secret
code.

There is an algorithm due to Donald Knuth that is guaranteed to
win in five moves or fewer. A detailed description of the algorithm is
available here http://en.wikipedia.org/wiki/Mastermind_(board_

game)#Five-guess_algorithm. For kudos, you can implement this
algorithm in Haskell.

Note, although the Five Guess algorithm terminates in fewer turns
than the naïve one, it is much more computationally intensive and
will take much longer to run in most cases. If you want test cases
that run quickly, choose secret codes that are very close to the first
guess.

http://en.wikipedia.org/wiki/Mastermind_(board_game)#Five-guess_algorithm
http://en.wikipedia.org/wiki/Mastermind_(board_game)#Five-guess_algorithm

	Mastermind

