
CIS 194: Haskell Programming in the Large

Throughout the semester we have concentrated on programming assignments
consisting of just one or two modules. As you work on your final projects you
may need to use many modules, install and interact with other packages which
themselves contain many modules, and so on. This document is intended to
guide you through the basics of this aspect of the Haskell ecosystem.

1 Hackage

Hackage (http://hackage.haskell.org/) is the standard, central repository
for Haskell packages. It contains a huge range of all sorts of packages.1 If you
need some code to accomplish a particular task, look on Hackage first to see
whether a package already exists that fits your need.

2 cabal

The cabal tool, which comes as part of the Haskell Platform, assists in managing
Haskell packages. One of its most useful features is the ability to automatically
download and install packages from Hackage. For example, executing

cabal install pandoc

at a command prompt (not a ghci prompt) will automatically download and
compile the pandoc package, along with all of its recursive dependencies.

Try typing cabal help to see a list of commands that are available.
It is not hard to make your own “cabalized” package which can be uploaded

to Hackage—use the cabal init command to generate the initial infrastructure,
then edit the .cabal file which is generated. This is not required for your project
but it’s a nice way to package it up for other people to try (even if you don’t
upload it to Hackage).

3 Modules

So far in the course we have used module declarations like

module Parser where

which suffices for simple, standalone files, but there are a few more things you
should know about modules when developing larger projects.

1In fact, perhaps it contains too many: it can be difficult to find things! An in-progress
redesign of the site to allow better organization, searching by tags and/or popularity, etc.,
may help with this.

1



3.1 Hierarchical module names

First, module names may be hierarchical ; that is, they may consist of a sequence
of names separated by periods, like this:

module Text.Pandoc.Writers.LaTeX where

Note that GHC expects to find hierarchically-named modules in a correspond-
ing place in the filesystem. For example, the above module should be in a
file Text/Pandoc/Writers/LaTeX.hs, that is, a file named LaTeX.hs contained
within a Writers directory which is itself a subdirectory of Pandoc, . . . and so
on. This is a good way to give some organization to projects containing many
modules.

3.2 Export and import lists

By default, everything defined in a module is exported, that is, made available
to any other modules which import it. However, you can choose to explicitly
export only certain things in a module with an export list. An export list looks
like this:

module My.Awesome.Module (Baz(..), Bar, mkBar) where

data Baz a = EmptyBaz | Node (Int -> Baz a)

data Bar = I Int | C Char

mkBar :: Int -> Bar

mkBar i = I (blerf i)

blerf :: Int -> Int

blerf = (+1)

In this example, the type Baz is exported, along with its constructors EmptyBaz
and Node (that’s what the (..) syntax means—to export only some construc-
tors you can also give an explicit comma-separated list of them in place of the
..). In contrast, the type Bar is exported but its constructors are not. So
anyone who imports My.Awesome.Module will be able to use and refer to things
of type Bar but they will not be able to directly construct or pattern-match on
them. The function mkBar is exported, which gives clients a way to indirectly
construct values of type Bar. Notice that mkBar calls blerf but blerf itself
is not exported. So clients of My.Awesome.Module can call mkBar (and hence
indirectly call blerf), but they cannot directly use blerf.

By the same token, one can have explicit import lists, to specify that you
only want to import certain things from a module. For example,

import Data.List (groupBy)

2



means that you are only going to use the groupBy function from Data.List.
This is useful to help document and keep track of what you are actually using
from each module, and also sometimes to help prevent name clashes—see below.

3.3 Dealing with name clashes

A problem arises if several modules export functions or types with the same
name. There are several solutions to this problem. For concreteness, let’s
suppose modules A and B both export a function named foo.

If you only need the foo from A, and you don’t care about the one from B,
you could give an explicit import list for B which doesn’t include foo:

import A

import B (baz, bar)

Sometimes this is tedious, however, if you are using lots of stuff from B. In that
case you can also specify a hiding clause:

import A

import B hiding (foo)

This means to import everything from B except for foo.
But what if you want to use both foos? In that case you need to use qualified

imports. For example,

import qualified A

import qualified B

Now you can say A.foo and B.foo to disambiguate which foo you want. You
can also do something like

import qualified Long.Module.Name as L

and now you get to refer to things imported from Long.Module.Name as L.foo
instead of Long.Module.Name.foo.

3


