CIS 194: Homework 9
Due Friday, 7 November

¢ Files you should submit: HW@9.hs.

Testing Ring properties

QuickCheck gives us the amazing power to do randomized testing.

This means that all you, the programmer, have to do is to write down
general properties you wish to test for, and you can have QuickCheck

do the actual test case generation. In our case, you will be testing to
make sure that Ring instances (provided, in Ring.hs, available from
the website) obey the ring properties.

Exercise 1 If you want to test the rings, you will need Arbitrary
instances for Mod5 and Mat2x2 so that QuickCheck can create arbi-
trary values of these types. Check out the documentation for the
Arbitrary class. You will see the method arbitrary :: Gen a —
this is the one you must implement. See the part of the documen-
tation page labeled “Generator combinators”. These will be useful.
Most importantly, note that Gen is a monad! So, you can start with
arbitrary = do ... and go from there.

Write Arbitrary instances for Mod5 and Mat2x2.

Hint: Integer has both Arbitrary and Random instances already.

Exercise 2 (Optional: %pt. extra credit) Implement the shrink
method for Mat2x2 by reading the shrink documentation.

Exercise 3 Visit the Wikipedia page for rings, at http://en.wikipedia.
org/wiki/Ring_ (mathematics). A little bit down the page, you'll see

8 properties that all rings should have. Encode these properties into

Haskell, in a form suitable for quickChecking. For compatibility with

our automated testing, name these prop_1 through prop_9." (Nor-
mally, you'd use better names than that.)

Make sure that your properties work with quickCheck by running,
say, quickCheck prop_1in GHCi. If you want to test something other
than Integers (the default), you'll need to add a type annotation, like

quickCheck (prop_1 :: Mat2x2 -> Mat2x2 -> Bool), though your
prop_1 may need more or fewer arrows.

Exercise 4 Write a property to rule them all, named prop_ring, that

checks to see if all the ring properties hold. There are many ways to

http://hackage.haskell.org/
package/QuickCheck-2.7.6/docs/
Test-QuickCheck.html

* Nine properties? Yes, nine. Although
Wikipedia shows eight bullets, there
are actually nine properties embedded
within that list.

http://hackage.haskell.org/package/QuickCheck-2.7.6/docs/Test-QuickCheck.html
http://hackage.haskell.org/package/QuickCheck-2.7.6/docs/Test-QuickCheck.html
http://hackage.haskell.org/package/QuickCheck-2.7.6/docs/Test-QuickCheck.html
http://en.wikipedia.org/wiki/Ring_(mathematics)
http://en.wikipedia.org/wiki/Ring_(mathematics)

do this, some cleaner than others. Take a look at the documentation
for Test.QuickCheck (available at http://hackage.haskell.org) to
find useful combinators, like conjoin and .&&.. Note that the types
for these combinators pose a bit of a challenge.

It is also possible to write prop_ring without using these combina-
tors, but it is neither as beautiful nor as fun. (You will get full correct-
ness points for such an implementation, but not full style points. But
remember, you have a chance to revise style!)

Exercise 5 One of the rings as defined in Ring.hs is broken. Use
your tests to find which one and write up your discovery in com-
ments in your code.

Generating binary search trees

Take a look at BST. hs, ripped straight from HWog4.

Exercise 6 The isBSTBetween and isBST functions there were writ-
ten without the benefit of type classes. Copy their definitions (along
with the datatype definiton for BST) to your code. Remove the first
parameter to both functions (the one of type a -> a -> Ordering),
and instead, add an Ord a constraint to both, and get them working
again.

Exercise 7 Write an Arbitrary instance for BST a that creates proper
binary search trees. Recall that, in a BST, a left sub-tree has values
less than the value stored in a node, and a right sub-tree has values
greater than the value stored in a node. A basic implementation of
arbitrary could proceed as follows:

* Write a helper function genBST :: (...) => a -> a -> Gen (BST a)
(where you'll have to fill in the . ..). The two parameters are the
lower and upper bounds of the tree. The function does the follow-
ing:

1. First, it decides whether it will make a leaf or an interior node.
This can be done, say, by generating an arbitrary Bool, though
there are other Gen combinators that make this more elegant.

2. If you wish to make a leaf, do so.

3. Otherwise, generate a value of type a in the range given by the
parameters. Call this value x.

4. Generate a tree bounded above by x via a recursive call; this
will be your left sub-tree.

CIS 194: HOMEWORK 9 2

http://hackage.haskell.org

CIS 194: HOMEWORK 9 3

5. Generate a tree bounded below by x via a recrusive call; this
will be your right sub-tree.

6. Put x together with the left and right sub-trees in a Node, and
you're done.

* Back in the implementation for arbitrary, generate arbitrary
lower and upper bounds (making sure that the lower bound is
indeed less than the upper one!) and call genBST.

You can test your arbitrary by using the generate and sample
functions in the QuickCheck library. You may need a type annotation
for this to work out. For example, type sample (arbitrary :: Gen (BST Integer)).

Exercise 8 (Optional: Jpt. extra credit) If you follow the implemen-
tation plan above, you may notice that roughly half of the generated
trees are Leafs. This is because the first step (depending on your
implementation) chooses to make a Leaf half of the time.

Modify your implementation to make a greater variety of trees.

Good starting points for this are the Arbitrary instance in the
BST. hs file (which does not make trees in order) and the example in
the lecture notes for MyList.

Testing parsers

There are Parsable instances in Ring.hs. These are harder to test
using property-based tests, so we’ll use old-fashioned unit tests using
HUnit.

Exercise 9 Write a test

parserTests :: Test
parserTests = TestList [...]

that includes at least two tests for each Parsable instance. Make
sure to give descriptive names to each test using (~:). You may find
it convenient to use the parseAll function, which parses assuming
that the entire string is consumed — that is, it checks to see that there
are no leftovers after parsing.

Note: To test the Integer Parsable instance, you will proba-
bly need a type annotation, to make clear that you mean Integer
and not, say, Int. For example, you may have code something like
parseAll "3" ~?= Just (3 :: Integer).

	Testing Ring properties
	Generating binary search trees
	Testing parsers

