
CIS 194: Homework 6
Due Friday, October 17, 2014

No template file is provided for this homework. Download the
markets.json file from the website, and make your HW06.hs Haskell
file with your name, any sources you consulted, and any other rele-
vant comments (just like in previous assignments). Then, say

{-# LANGUAGE DeriveGeneric, OverloadedStrings #-}

module HW06 where

import Data.Aeson

import Data.Monoid

import GHC.Generics

import qualified Data.ByteString.Lazy.Char8 as B

import qualified Data.Text as T

import qualified Data.Text.IO as T

and off you go. Do make sure to include this module header, as it
makes grading much easier for us.

Preface

Setup

You will need two packages that are not part of Haskell’s standard
library for this assignment. They are aeson and text. You can install
these with cabal update; cabal install aeson text.1 If you have 1 The cabal update part is to make sure

you download the most recent versions
of these packages.

GHCi open, you will need to restart GHCi to use these downloaded
libraries.

Generics

You will see the language extension DeriveGeneric in the module
header given above. This allows you to name the class Generic2 2 imported from GHC.Generics

in a deriving clause when declaring a new datatype. You will not
use any of the methods or other features of the Generic class.3 The 3 Feel free to look it up!

reason to derive Generic is for easy interoperability with the aeson

JSON-parsing library. A derived Generic instance encodes various
features of a datatype (such as its constructor names, any record-field
names, etc.) that advanced Haskellers can (such as the authors of
aeson) use to make your life easier.



cis 194: homework 6 2

JSON files

This homework centers around parsing and then querying informa-
tion stored in a JSON file. JSON is a standardized data interchange
format that is easy to read and easy to write. See json.org for the de-
tails, but you won’t need to know about details for this assignment.
Instead, the aeson library does all the work for you!

What you do have to worry about is making sure that your Haskell
program can find your markets.json file. Putting the file in the same
directory as your HW06.hs file is a great start, but it’s not always
enough. If you’re having trouble getting your code to find your file,
and you’re using GHCi, try running :!pwd. That will print out the
current directory GHCi thinks it’s in. (The :! prefix allows you to
run arbitrary shell commands within GHCi.) If markets.json isn’t
there, either move it there, or use :cd to move GHCi.4 4 :cd is a GHCi command. The missing

! is intentional!

String theory

Haskell’s built-in String type is a little silly. Sure, it’s programmati-
cally convenient to think of Strings as lists of characters, but that’s a
terrible, terrible way to store chunks of text in the memory of a com-
puter. Depending on an application’s need, there are several other
representations of chunks of text available. This assignment will need
two other representations: ByteString and Text.

The ByteString library helpfully (?) uses many of the same names
for functions as the Prelude and Data.List. If you just import Data.ByteString,
you’ll get a ton of name clashes in your code. Instead, we use import qualified ... as B,
which means that every use of a ByteString function (including op-
erators) or type must be preceded by B.. Thus, to get the length of a
ByteString, you use B.length. Even to mention the type ByteString,
you must use B.ByteString.

ByteStrings come in several flavors, depending on whether they
are lazy or strict and what encoding they use internally. Laziness is a
story for another day, and we really don’t want to worry about encod-
ings. For now, use Data.ByteString.Lazy.Char8 and everything will
work out nicely.

Text is quite like ByteString: it also reuses a lot of familiar names.
It also comes in two laziness flavors. We’ll be using the strict flavor,
which is provided in Data.Text. You also may want some I/O op-
erations, so the import statements above include the Data.Text.IO

module.
When working with non-String strings, it is still very handy to

use the "..." syntax for writing Text or ByteString values. So,
GHC provides the OverloadedStrings extension. This works quite
similarly to overloaded numbers, in that every use of "blah" be-

json.org


cis 194: homework 6 3

comes a call to fromString "blah", where fromString is a method
in the IsString type class. Values of any type that has an instance
of IsString can then be created with the "..." syntax. Of course,
ByteString and Text are both in the IsString class, as is String.

A consequence of OverloadedStrings is that sometimes GHC
doesn’t know what string-like type you want, so you may need to
provide a type signature. You generally won’t need to worry about
OverloadedStrings as you write your code for this assignment, but
this explanation is meant to help if you get strange error messages.

Off to the market

http://www.bayoucityoutdoors.com/ClubPortal/ClubStatic.cfm?clubID=3&pubmenuoptID=11318

The markets.json file you have downloaded contains informa-
tion about many (all?) of the Farmers’ Markets that regularly take
place throughout the USA, originally retrieved via http://catalog.

data.gov/dataset/farmers-markets-geographic-data. That website
produces the data in an Excel spreadsheet. I converted the spread-
sheet to a comma-separated-values format (CSV) and then used
http://www.convertcsv.com/csv-to-json.htm to get it into a JSON
format. I chose JSON because the aeson JSON parser is more ad-
vanced yet easier to use than the CSV parser package, cassava.5 5 I am giving you these details in case

you want to look at other datasets.Take a look at the data by opening up the file in a text editor.
You’ll see that each market entry has many different fields, all with
distinct names but of different types.

First, notice that the many Boolean values in the file are labeled
with "Y" or "N". As smart as aeson is, it doesn’t know that "Y" cor-

http://www.bayoucityoutdoors.com/ClubPortal/ClubStatic.cfm?clubID=3&pubmenuoptID=11318
http://catalog.data.gov/dataset/farmers-markets-geographic-data
http://catalog.data.gov/dataset/farmers-markets-geographic-data
http://www.convertcsv.com/csv-to-json.htm


cis 194: homework 6 4

responds to True and "N" corresponds to False. Your first task is to
construct a Value6 that has been adjusted to have proper Booleans 6 Value is a type from the aeson library.

Hoogle does not search the aeson

package by default, so you will have
to access the package documentation
on Hackage. Try this URL: http:
//hackage.haskell.org/package/

aeson-0.8.0.0. There is a newer
version uploaded (0.8.0.1), but for some
reason, the documentation isn’t there.

instead of "Y" and "N".
One aeson function that parses JSON is called eitherDecode:

eitherDecode :: FromJSON a => ByteString -> Either String a

The FromJSON type class is also exported by the aeson package7 Its
7 In case you haven’t noticed, I’m using
“package” and “library” interchange-
ably.

one method parseJSON :: Value -> Parser a (which you will not
have to write in this assignment) says how to parse from JSON to the
class type a. Thus, anything in the FromJSON type class can be parsed
from a JSON file. Of course, parsing can fail, so eitherDecode returns
either the desired value or a String containing error information.

A useful member of the FromJSON type class is Value. Value rep-
resents JSON syntax in a Haskell type. Check out its documenta-
tion.8 A JSON Value can be one of six things: an object (something 8 Ignore the !s in the documentation.

They are strictness annotations, which
are a story for another day. They don’t
affect you at all here.

in braces; a mapping from key names to other values), an array
(something in brackets; a listing of JSON values), some text, a num-
ber, a Boolean value, or the special constant null. Look a little fur-
ther down in the documentation to see the definitions for the types
Object and Array.

An Object is a HashMap Text Value — that is, a way to get Values
indexed by some Text. However, the details of HashMap aren’t im-
portant at all for you. What is critically important is that there is an
instance Functor (HashMap k). That means that a valid type for fmap
is (a -> b) -> HashMap k a -> HashMap k b.

An Array is a Vector Value. Vector is a type quite like normal
lists but uses a different internal representation.9 Some operations on 9 Haskell lists are linked lists; Vectors

are arrays.Vectors are faster than for lists; some are slower. However, the details
of Vector aren’t important at all for you. What is critically important
is that there is an instance Functor Vector. That means that a valid
type for fmap is (a -> b) -> Vector a -> Vector b.

Exercise 1 Write a function

ynToBool :: Value -> Value

that changes all occurrences of String "Y" to be Bool True and all
occurrences of String "N" to be Bool False. No other part of the
input Value should change.

Exercise 2 Write a function

parseData :: B.ByteString -> Either String Value

that takes in a ByteString containing JSON data and outputs either
an error message or a Value that has been processed by ynToBool.

http://hackage.haskell.org/package/aeson-0.8.0.0
http://hackage.haskell.org/package/aeson-0.8.0.0
http://hackage.haskell.org/package/aeson-0.8.0.0


cis 194: homework 6 5

Hint: This can be very short, if you use Either’s Functor instance!
You can easily test this by saying, for example, filedata <- B.readFile "markets.json"

in GHCi and then calling parseData on filedata.

The Market type

If you define a datatype Market appropriately, include deriving Generic,
and say instance FromJSON Market with no where clause, you get an
automatic parser for your datatype. For example, if you have

data Person = Person { name :: String

, age :: Int }

deriving (Show, Generic)

instance FromJSON Person

p :: Either String Person

p = eitherDecode "{ \"name\" : \"Richard\", \"age\" : 32 }"

You get that p == Right (Person "Richard" 32).10 The aeson 10 The extra backslashes in the string
above are because the string must
contain quotes, and Haskell’s way
of putting quotes in strings is to use
backslashes like you see here.

library uses the field names in the Person record (see the lecture
notes about record notation) to figure out what the JSON tags should
be. The order doesn’t matter – aeson really is using the names.

Exercise 3 Write a Market type, including the fields that interest
you. At a minimum, include marketname, x (the longitude of the
market), y (the latitude of the market), and state. Use T.Text to
represent text. (String also works, but is less efficient.)

Then, write a function

parseMarkets :: B.ByteString -> Either String [Market]

that uses parseData and fromJSON (from the aeson package) to parse
in the list of markets in the file.

Exercise 4 Write an I/O action

loadData :: IO [Market]

that loads the market data. In the event of a parsing failure, report
the error using fail :: String -> IO a. (fail aborts an action,
reporting an error to the user. It never returns, so it can be used no
matter what IO type is expected. That’s why it returns type IO a, for
any a.)

Once this is defined, you can get your market data by saying
mkts <- loadData in GHCi.



cis 194: homework 6 6

Interlude: an ordered-list monoid

Before we get to actually searching the loaded market data, it will
be helpful to defined an monoid for an ordered list. An ordered list,
which we’ll call OrdList, is a wrapper around lists (in the tradition of
First, Last, Sum, and Product, all from the Data.Monoid module) that
defines a Monoid instance which keeps the list ordered, from least to
greatest. For example:

data OrdList a = OrdList { getOrdList :: [a] }

deriving (Eq, Show)

-- include this datatype in your code!

instance Ord a => Monoid (OrdList a) where ...

-- you’ll need to fill in the ellipses

evens :: OrdList Integer

evens = OrdList [2,4,6]

odds :: OrdList Integer

odds = OrdList [1,3,5]

combined :: OrdList Integer

combined = evens <> odds

Now, combined should have the value OrdList [1,2,3,4,5,6],
because the (<>) operator maintains the ordering invariant.

Exercise 5 Write the OrdList datatype and its Monoid instance.

Searching with Monoids

Now that you have a way of loading the market data, you need a way
of searching through that data. Furthermore, it would be nice if the
search mechanism is flexible enough to produce data in a Monoid of
the caller’s choice. Although there are, I’m sure, other queries you
might want to do, all of our queries are going to center on searching
for a market’s name (the marketname field).

Throughout this section, we will be searching among the markets
returning a variety of types. To avoid code repetition, it is helpful to
use a type synonym. Include the following in your code:

type Searcher m = T.Text -> [Market] -> m

Thus, a Searcher m is a function that, when given the T.Text to
search for in a [Market], will produce an m.



cis 194: homework 6 7

Exercise 6 Write a function

search :: Monoid m => (Market -> m) -> Searcher m

that searches through the provided list of Markets for market names
containing the given T.Text (Data.Text.isInfixOf will be useful
here). With each found market record, use the function provided to
convert the market record into the monoid of the caller’s choice, and
then combine all the individual results using mappend and mconcat.

Note that we can always expand type synonyms in Haskell. So,
the type of search is fully equivalent to Monoid m => (Market -> m) -> T.Text -> [Market] -> m.
This means that the definition for search may include up to three ar-
guments, even though the type looks like it should take only one.

Hint: This function should not be very long. If it’s getting long,
you’re probably doing something the wrong way. You may also want
to check out the intInts example from the lecture notes.

Hint: Using an as-pattern may be helpful. Here is an example:

marketWithName :: Market -> (T.Text, Market)

marketWithName mkt@(Market { marketname = name }) = (name, mkt)

Note that mkt is matched against the whole market record, while the
pattern-match also binds name to the market’s name. The name is just
one field in the record matched by mkt.

Exercise 7 Write a function

firstFound :: Searcher (Maybe Market)

that returns the first market found by a search, if any are found at all.
Like in the case for search, above, your firstFound function can

be given arguments, even though the type looks like there should be
no arguments. Unlike search, though, this one is definable without
taking any arguments, with the right call to search.

Hint: The following function may be useful for all the searching
exercises. Look at the type to figure out what it does:

compose2 :: (c -> d) -> (a -> b -> c) -> a -> b -> d

compose2 = (.) . (.)

Exercise 8 Write a function

lastFound :: Searcher (Maybe Market)

that returns the last market found by a search, if any are found at all.

Exercise 9 Write a function



cis 194: homework 6 8

allFound :: Searcher [Market]

that returns all the markets found by a search.

Exercise 10 Write a function

numberFound :: Searcher Int

that returns the number of markets found by a search.

Exercise 11 Write a function

orderedNtoS :: Searcher [Market]

tht returns all the markets found by a search, ordered from north-
ernmost to southernmost. You will need a wrapper around Market

to choose an appropriate Ord instance. This exercise doesn’t take too
much code, but getting the structure right is intended to be a chal-
lenge.

You may find that your function takes a little while to run. As an
optional extra, make it work more efficiently by adding a definition
for mconcat to the Monoid instance for OrdList and make sure your
search function uses mconcat. The default definition for mconcat puts
elements together one by one, but you can write a custom one that
maintains the ordering in a more efficient fashion.

Exercise 12 (Optional) Now that you’ve built the infrastructure to
do queries on this dataset, see if you can find an interesting detail
in the data. It should be fairly easy at this point to make a variety of
queries. Tell us something we didn’t know about farmer’s markets!


	Preface
	Off to the market
	Interlude: an ordered-list monoid
	Searching with Monoids

