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Logistics

● HW4 due Wednesday 4/2
○ Get it out of the way so you can work on the project
○ Will be graded manually (lenient)

● Project proposals – feedback to be released soon
○ Refer back to the feedback periodically while working

● Project checkpoint due 4/10
○ Aim for ~75% completion
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Recap: Constraint Programs
● Find an assignment of variables to values, subject 

to general constraints
● Discrete, finitely bounded domains (integers only)
● May or may not optimize an objective
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The “if…then…” 
conundrum● Suppose we want to implement logic along the lines of:

“If x condition holds, then y must hold”
i.e. we want a constraint to be tied to a variable / other constraint
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The “if…then…” 
conundrum● Suppose we want to implement logic along the lines of:

“If x condition holds, then y must hold”

● With Constraint Programming, our constraints aren’t just 
linear inequalities, so we need a more general way of 
handling this!



Constraints for BoolVars
● Recall  model.NewBoolVar(name)

○ Equivalent to model.NewIntVar(0, 1, name)

● boolvar.Not()

● model.AddBoolOr(boolvars_list)

● model.AddBoolAnd(boolvars_list)

● model.AddImplication(b1, b2)
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Ex: Magic Sequence
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  s0   s1   s2   s3   s4

? ? ? ? ?



Ex: Magic Sequence
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  s0   s1   s2   s3   s4

2 1 2 0 0



Ex: Magic Sequence
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PROBLEM: Given n, does there exist a magic sequence s0, s1, …, 
sn, and if so, what is it?



Ex: Magic Sequence
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Step 1: Define the variables

Each si will be a variable.



Ex: Magic Sequence
 

14

Step 2: Define the values for the variables

The minimum si can be is 0, the maximum is (n+1)



Ex: Magic Sequence
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Step 3: Define the constraints for the problem.

Si = # of occurrences of i amongst s0, …, sn

“If the value i appears j times, then si = j”



Reification
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● Allows us to express “if-then” relationships as constraints
○ Ex. “If x is equal to 5, then y must be greater than 7”

● Reification: the process of linking a logical condition to a 
boolean variable



Reification
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“If x is equal to 5, then y must be greater than 7”
● Step 1: Introduce a boolean variable which will indicate whether x = 5

● Step 2: Tie the boolean indicator with the condition x = 5

● Step 3: Add further constraints with respect to the indicator:



Reification in OR-Tools
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⚠ Reification Warning
● constraint.OnlyEnforceIf only works for these constraints:

○ Add
○ AddBoolOr
○ AddBoolAnd
○ AddLinearExpressionInDomain (haven’t seen this one yet)

● This is usually all you need
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Magic Sequence in OR-Tools
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Magic Sequence in OR-Tools
●  
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Magic Sequence in OR-Tools
●  
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Magic Sequence in OR-Tools
● Solve and print the output
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Non-contiguous Domains
● cp_model.Domain.FromValues([0,2,4,6,8])

● cp_model.Domain.FromIntervals([0, 2],[6, 8])

● model.NewIntVarFromDomain(domain, name)
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Linear Expressions on 
Domains● Enforce that result of a linear expression must fall into a domain
● cp_model.AddLinearExpressionInDomain(

      x + y,

      cp_model.Domain.FromValues([0,2,4])

   )
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0,4 1,4 2,4 3,4 4,4



Ex: Shipping Allotments
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Solving the Problem
● Step 1: Define the variables

nk, s = number of boxes of size k on ship s

15 
kg
15 
kg

45
kg

0 n15, 0 = 2

n20, 0 = 0

n30, 0 = 0

n45, 0 = 1



Solving the Problem
● Step 2: Define the values for the variables

nk, s = number of shipments of size k on ship s

nk, s >= 0

nk, s <= # of size k boxes we have



Solving the Problem
● Step 3: Define the constraints

● Each box is on exactly one ship

● We do not exceed the capacity of a ship

nk, s = number of shipments of size k on ship s



Solving the Problem
● Step 4: Include Objective

● Maximize the number of ships with 20 free capacity

count_cap

For each ship, if it has 20 free capacity, then it contributes to count_cap

Reification! 
(go to code)



Tuning the CP-SAT Solver
● We can play around with CP-SAT internals to 

possibly speed up the search
● There are tons of parameters that can be adjusted

○ Some are documented better than others...

○ https://github.com/google/or-tools/blob/stable/ortool
s/sat/sat_parameters.proto

● Warning: these things are generally far less 
important than having a good encoding
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Parallelization
● We can run solver computation in parallel across 

multiple threads

○ By default, CP-SAT will try to use all available cores
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Hinting
● We can give the model a hint to try setting a 

variable to a specified value
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Quick & Dirty Optimization
● Finding an optimal solution can take far longer than 

finding a feasible solution
● Often in practice, we don’t really care about having the 

true optimal value with total certainty
○ Just want it to be “close enough”
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Quick & Dirty Optimization
Solution:
● Optimize objective and run solver for a reasonable amount of 

time (depends on your patience)
● Interrupt early with Ctrl+C or max_time_in_seconds param

○ If interrupted, solver returns FEASIBLE instead of OPTIMAL

● Print the intermediate objective value and solution and 
decide if it’s “good enough”
○ For tough problems, no guarantee that you are close to optimal!
○ best_bound in response stats gives best LB (when minimizing) 

or UB (when maximizing) proved so far for optimal value
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Quick & Dirty Optimization
● Helpful: set log_search_progress param to True

○ Prints every time a new best solution is found

● Sometimes helpful: custom solution callback
○ Called each time any new feasible solution is found
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Approximating Feasibility
● What if non-optimization problem is too hard to solve?
● Can’t interrupt early for a “good enough” solution; 

intermediate solution is feasible or it is not
● What if we were OK with a “not quite feasible” solution?

○ What could “not quite feasible” mean?
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Soft Constraints
● Constraints like Add(...) are hard constraints

○ Must be satisfied

● Soft constraints: can be violated, but incurs a penalty
● Transform feasibility problem into optimization problem by 

minimizing penalty
○ Allows interrupting early if you’re OK with some violated constraints
○ Can sometimes be faster than solving with hard constraints!
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Ex: Soft Graph Coloring
 

41



Optimizing Pairs of 
Objectives 
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Optimizing Pairs of 
Objectives 
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General CP-SAT Modeling 
Tips●  
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MIP vs CP-SAT

● Neither is clearly more performant in general

● Neither is an evolution of the other
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MIP CP-SAT
• Supports infinite bounds
• Supports fractional variables and 

coefficients
• Better handles LP-style problems 

(with integers mixed in)
• Reification of constraints is possible, 

but requires algebraic modeling trick

• Better handles combinatorial 
problems, Booleans

• More sophisticated interface
• Lots of specialized modeling objects
• Modeling may be easier
• Models may be more extensible
• Reification is easier, more performant


