
Lecture 9:
More Constraint
Programming
Ishaan Lal ilal@seas.upenn.edu

CIS 1921

mailto:ilal@seas.upenn.edu

Logistics

● HW4 due Wednesday 4/2
○ Get it out of the way so you can work on the project
○ Will be graded manually (lenient)

● Project proposals – feedback to be released soon
○ Refer back to the feedback periodically while working

● Project checkpoint due 4/10
○ Aim for ~75% completion

2

Recap: Constraint Programs
● Find an assignment of variables to values, subject

to general constraints
● Discrete, finitely bounded domains (integers only)
● May or may not optimize an objective

3

The “if…then…”
conundrum● Suppose we want to implement logic along the lines of:

“If x condition holds, then y must hold”
i.e. we want a constraint to be tied to a variable / other constraint

The “if…then…”
conundrum● Suppose we want to implement logic along the lines of:

“If x condition holds, then y must hold”

The “if…then…”
conundrum● Suppose we want to implement logic along the lines of:

“If x condition holds, then y must hold”

● If i1 = 0, then 0 <= δ1 <= 400

● If i1 = 1, then 400 <= δ1 <= 400

The “if…then…”
conundrum● Suppose we want to implement logic along the lines of:

“If x condition holds, then y must hold”

● If i1 = 0, then 0 <= δ1 <= 400

● If i1 = 1, then 400 <= δ1 <= 400

The “if…then…”
conundrum● Suppose we want to implement logic along the lines of:

“If x condition holds, then y must hold”

● With Constraint Programming, our constraints aren’t just
linear inequalities, so we need a more general way of
handling this!

Constraints for BoolVars
● Recall model.NewBoolVar(name)

○ Equivalent to model.NewIntVar(0, 1, name)

● boolvar.Not()

● model.AddBoolOr(boolvars_list)

● model.AddBoolAnd(boolvars_list)

● model.AddImplication(b1, b2)

9

Ex: Magic Sequence

10

 s0 s1 s2 s3 s4

? ? ? ? ?

Ex: Magic Sequence

11

 s0 s1 s2 s3 s4

2 1 2 0 0

Ex: Magic Sequence

12

PROBLEM: Given n, does there exist a magic sequence s0, s1, …,
sn, and if so, what is it?

Ex: Magic Sequence

13

Step 1: Define the variables

Each si will be a variable.

Ex: Magic Sequence

14

Step 2: Define the values for the variables

The minimum si can be is 0, the maximum is (n+1)

Ex: Magic Sequence

15

Step 3: Define the constraints for the problem.

Si = # of occurrences of i amongst s0, …, sn

“If the value i appears j times, then si = j”

Reification

16

● Allows us to express “if-then” relationships as constraints
○ Ex. “If x is equal to 5, then y must be greater than 7”

● Reification: the process of linking a logical condition to a
boolean variable

Reification

17

“If x is equal to 5, then y must be greater than 7”
● Step 1: Introduce a boolean variable which will indicate whether x = 5

● Step 2: Tie the boolean indicator with the condition x = 5

● Step 3: Add further constraints with respect to the indicator:

Reification in OR-Tools

18

⚠ Reification Warning
● constraint.OnlyEnforceIf only works for these constraints:

○ Add
○ AddBoolOr
○ AddBoolAnd
○ AddLinearExpressionInDomain (haven’t seen this one yet)

● This is usually all you need

19

Magic Sequence in OR-Tools

20

Magic Sequence in OR-Tools
●

21

Magic Sequence in OR-Tools
●

22

Magic Sequence in OR-Tools
● Solve and print the output

23

Non-contiguous Domains
● cp_model.Domain.FromValues([0,2,4,6,8])

● cp_model.Domain.FromIntervals([0, 2],[6, 8])

● model.NewIntVarFromDomain(domain, name)

24

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

Linear Expressions on
Domains● Enforce that result of a linear expression must fall into a domain
● cp_model.AddLinearExpressionInDomain(

 x + y,

 cp_model.Domain.FromValues([0,2,4])

)

25

0,0 1,0 2,0 3,0 4,0

0,1 1,1 2,1 3,1 4,1

0,2 1,2 2,2 3,2 4,2

0,3 1,3 2,3 3,3 4,3

0,4 1,4 2,4 3,4 4,4

Ex: Shipping Allotments

26

0/100kg 0/100kg

20
kg
20
kg

20
kg
20
kg

15
kg
15
kg
15
kg

15
kg
15
kg
15
kg

30
kg
30
kg

30
kg
30
kg

45
kg
45
kg

45
kg

20
kg
20
kg

20
kg

20
kg

15
kg

15
kg
15
kg

15
kg

15
kg

15
kg

30
kg

30
kg

30
kg
30
kg

45
kg

45
kg

45
kg

75/100 75/100 75/100 100/100 100/100

0 1 2 3 4

Solving the Problem
● Step 1: Define the variables

nk, s = number of boxes of size k on ship s

15
kg
15
kg

45
kg

0 n15, 0 = 2

n20, 0 = 0

n30, 0 = 0

n45, 0 = 1

Solving the Problem
● Step 2: Define the values for the variables

nk, s = number of shipments of size k on ship s

nk, s >= 0

nk, s <= # of size k boxes we have

Solving the Problem
● Step 3: Define the constraints

● Each box is on exactly one ship

● We do not exceed the capacity of a ship

nk, s = number of shipments of size k on ship s

Solving the Problem
● Step 4: Include Objective

● Maximize the number of ships with 20 free capacity

count_cap

For each ship, if it has 20 free capacity, then it contributes to count_cap

Reification!
(go to code)

Tuning the CP-SAT Solver
● We can play around with CP-SAT internals to

possibly speed up the search
● There are tons of parameters that can be adjusted

○ Some are documented better than others...

○ https://github.com/google/or-tools/blob/stable/ortool
s/sat/sat_parameters.proto

● Warning: these things are generally far less
important than having a good encoding

33

https://github.com/google/or-tools/blob/stable/ortools/sat/sat_parameters.proto
https://github.com/google/or-tools/blob/stable/ortools/sat/sat_parameters.proto

Parallelization
● We can run solver computation in parallel across

multiple threads

○ By default, CP-SAT will try to use all available cores

34

Hinting
● We can give the model a hint to try setting a

variable to a specified value

35

Quick & Dirty Optimization
● Finding an optimal solution can take far longer than

finding a feasible solution
● Often in practice, we don’t really care about having the

true optimal value with total certainty
○ Just want it to be “close enough”

36

Quick & Dirty Optimization
Solution:
● Optimize objective and run solver for a reasonable amount of

time (depends on your patience)
● Interrupt early with Ctrl+C or max_time_in_seconds param

○ If interrupted, solver returns FEASIBLE instead of OPTIMAL

● Print the intermediate objective value and solution and
decide if it’s “good enough”
○ For tough problems, no guarantee that you are close to optimal!
○ best_bound in response stats gives best LB (when minimizing)

or UB (when maximizing) proved so far for optimal value

37

Quick & Dirty Optimization
● Helpful: set log_search_progress param to True

○ Prints every time a new best solution is found

● Sometimes helpful: custom solution callback
○ Called each time any new feasible solution is found

38

Approximating Feasibility
● What if non-optimization problem is too hard to solve?
● Can’t interrupt early for a “good enough” solution;

intermediate solution is feasible or it is not
● What if we were OK with a “not quite feasible” solution?

○ What could “not quite feasible” mean?

39

Soft Constraints
● Constraints like Add(...) are hard constraints

○ Must be satisfied

● Soft constraints: can be violated, but incurs a penalty
● Transform feasibility problem into optimization problem by

minimizing penalty
○ Allows interrupting early if you’re OK with some violated constraints
○ Can sometimes be faster than solving with hard constraints!

40

Ex: Soft Graph Coloring

41

Optimizing Pairs of
Objectives

42

Optimizing Pairs of
Objectives

43

General CP-SAT Modeling
Tips●

44

MIP vs CP-SAT

● Neither is clearly more performant in general

● Neither is an evolution of the other

45

MIP CP-SAT
• Supports infinite bounds
• Supports fractional variables and

coefficients
• Better handles LP-style problems

(with integers mixed in)
• Reification of constraints is possible,

but requires algebraic modeling trick

• Better handles combinatorial
problems, Booleans

• More sophisticated interface
• Lots of specialized modeling objects
• Modeling may be easier
• Models may be more extensible
• Reification is easier, more performant

