

Lecture 9: More Constraint

Programming

Ishaan Lal <u>ilal@seas.upenn.edu</u>

Logistics

• HW4 due Wednesday 4/2

• Get it out of the way so you can work on the project

- Will be graded manually (lenient)
- Project proposals feedback to be released soon
 - Refer back to the feedback periodically while working
- Project checkpoint due 4/10
 - Aim for ~75% completion

Recap: Constraint Programs

- Find an assignment of variables to values, subject to general constraints
- Discrete, finitely bounded domains (integers only)
- May or may not optimize an objective

The "if...then..." Concendent logic along the lines of: "If x condition holds, then y must hold"

i.e. we want a constraint to be tied to a variable / other constraint

The "if...then..." Concentration plement logic along the lines of: "If x condition holds, then y must hold"

The "if...then..." Concentration plement logic along the lines of: "If x condition holds, then y must hold"

• If
$$i_1 = 0$$
, then $0 \le \delta_1 \le 400$

• If
$$i_1 = 1$$
, then 400 <= $\delta_1 <= 400$

The "if...then..." Concendration plement logic along the lines of: "If x condition holds, then y must hold"

• If $i_1 = 0$, then $0 \le \delta_1 \le 400$

• If
$$i_1 = 1$$
, then 400 <= $\delta_1 <= 400$

 $i_1 \cdot 400 < \delta_1 < 400$

The "if...then..." Control of the lines of: "If x condition holds, then y must hold"

• With Constraint Programming, our constraints aren't just linear inequalities, so we need a more general way of handling this!

Constraints for BoolVars

- Recall model.NewBoolVar(name)
 - Equivalent to model.NewIntVar(0, 1, name)
- boolvar.Not()
- model.AddBoolOr(boolvars_list)
- model.AddBoolAnd(boolvars_list)
- model.AddImplication(b1, b2)

• A **magic sequence** is a sequence *s*₀, *s*₁, ..., *s*_n where *s*_i = number of occurrences of *i* in the sequence

• Ex:

• A **magic sequence** is a sequence *s*₀, *s*₁, ..., *s*_n where *s*_i = number of occurrences of *i* in the sequence

• Ex:

A magic sequence is a sequence s₀, s₁, ..., s_n where s_i = number of occurrences of i in the sequence

PROBLEM: Given n, does there exist a magic sequence $s_0, s_1, ..., s_n$, and if so, what is it?

A magic sequence is a sequence s₀, s₁, ..., s_n where s_i = number of occurrences of i in the sequence

Step 1: Define the variables

Each s_i will be a variable.

A magic sequence is a sequence s₀, s₁, ..., s_n where s_i = number of occurrences of i in the sequence

Step 2: Define the values for the variables

The minimum s_i can be is 0, the maximum is (n+1)

A magic sequence is a sequence s₀, s₁, ..., s_n where s_i = number of occurrences of i in the sequence

Step 3: Define the constraints for the problem.

S_i = **#** of occurrences of i amongst s₀, ..., s_n

"If the value i appears j times, then s_i = j"

Reification

- Allows us to express "if-then" relationships as constraints
 - Ex. "If x is equal to 5, then y must be greater than 7"
- **Reification:** the process of linking a logical condition to a boolean variable

- Introduce a new boolean (0/1) variable b which is true if and only if constraint c holds ($b \Leftrightarrow c$)
 - Essentially, name truth value of *c* with variable *b*

Reification

"If x is equal to 5, then y must be greater than 7"

• Step 1: Introduce a boolean variable which will indicate whether x = 5

is_x_five = model.NewBoolVar("is_x_five")

```
Step 2: Tie the boolean indicator with the condition x = 5
```

 $x == 5 \iff \texttt{is_x_five} = 1$

model.Add(x == 5).OnlyEnforceIf(is_x_five)
model.Add(x != 5).OnlyEnforceIf(is_x_five.Not())

model.add(y > 7).OnlyEnforceIf(is_x_five)

Reification in OR-Tools

- OR-Tools API uses **half-reification**: instead of $b \Leftrightarrow c$, just supports $b \Rightarrow c$
 - Can fully reify by combining $b \Rightarrow c$ and $\overline{b} \Rightarrow \overline{c}$
- onstraint.OnlyEnforceIf(bool_var)
 - Means bool_var ⇒ constraint

Reification Warning

- constraint.OnlyEnforceIf only works for these constraints:
 - Add
 - AddBoolOr
 - AddBoolAnd
 - AddLinearExpressionInDomain (haven't seen this one yet)
- This is usually all you need

• Initialize model and *s_i* variables

model = cp_model.CpModel()

```
# Create s_i variables
S = {}
for i in range(n+1):
    S[i] = model.NewIntVar(0, n+1, f's_{i}')
```


Reify constraints $s_i = j$ into new boolean variables

```
# Reified constraints: eq[i, j] <-> s_i == j
eq = {}
for i in range(n+1):
    for j in range(n+1):
        eq[i, j] = model.NewBoolVar(f's_{i} == {j}')
        model.Add(S[i] == j).OnlyEnforceIf(eq[i, j])
        model.Add(S[i] != j).OnlyEnforceIf(eq[i, j].Not())
```


• Make s_i equal to number of occurrences of i

```
# s_i = number of occurrences of i in sequence
for i in range(n+1):
    model.Add(
        S[i] == sum(eq[j, i] for j in range(n+1))
        )
```


• Solve and print the output

solver = cp_model.CpSolver()
if solver.Solve(model) == cp_model.FEASIBLE:
 print([f's_{i}={solver.Value(S[i])}' for i in range(n+1)])

Non-contiguous Domains

cp_model.Domain.FromValues([0,2,4,6,8])

0	1	2	3	4	5	6	7	8
---	---	---	---	---	---	---	---	---

cp_model.Domain.FromIntervals([0, 2],[6, 8])

0	1	2	3	4	5	6	7	8
---	---	---	---	---	---	---	---	---

model.NewIntVarFromDomain(domain, name)

Linear Expressions on Domains esult of a linear expression must fall into a domain

cp_model.AddLinearExpressionInDomain(

x + y,

cp_model.Domain.FromValues([0,2,4])

0,0	1,0	2,0	3,0	4,0
0,1	1,1	2,1	3,1	4,1
0,2	1,2	2,2	3,2	4,2
0,3	1,3	2,3	3,3	4,3
0,4	1,4	2,4	3,4	4,4

Ex: Shipping Allotments

- Shipping company has n ships with capacity 100 each
- Want to load all shipments of varying sizes onto ships
- **Goal:** maximize number of ships which have at least 20 capacity unused (in case of emergency)
 - See worked solution in additional code (ships.py)

• Step 1: Define the variables

n_{k, s} = number of boxes of size k on ship s

• Step 2: Define the values for the variables

n_{k, s} = number of shipments of size k on ship s

$$n_{k,s} \leq \#$$
 of size k boxes we have

• Step 3: Define the constraints

n_{k, s} = number of shipments of size k on ship s

• Each box is on exactly one ship

For each "box" k,
$$\sum_{i} n_{k, \text{ship } i} == \text{count}_k$$

• We do not exceed the capacity of a ship

For each ship
$$s$$
, $\sum_{k} k \cdot n_{k,s} \leq \text{capacity}$

- Step 4: Include Objective
 - Maximize the number of ships with 20 free capacity

count_cap

For each ship, if it has 20 free capacity, then it contributes to count_cap

Reification! (go to code)

Tuning the CP-SAT Solver

- We can play around with CP-SAT internals to possibly speed up the search
- There are tons of parameters that can be adjusted
 - Some are documented better than others...
 - <u>https://github.com/google/or-tools/blob/stable/ortool</u> <u>s/sat/sat_parameters.proto</u>
- **Warning:** these things are generally far less important than having a good encoding

Parallelization

• We can run solver computation in parallel across multiple threads

solver = cp_model.CpSolver()
solver.parameters.num_search_workers = 4

• By default, CP-SAT will try to use all available cores

Hinting

• We can give the model a **hint** to try setting a variable to a specified value

try setting x = 5 first model.AddHint(x, 5)

Quick & Dirty Optimization

- Finding an optimal solution can take far longer than finding a feasible solution
- Often in practice, we don't *really* care about having the true optimal value with total certainty
 - Just want it to be "close enough"

Quick & Dirty Optimization

Solution:

- Optimize objective and run solver for a reasonable amount of time (depends on your patience)
- Interrupt early with Ctrl+C or max_time_in_seconds param
 - If interrupted, solver returns FEASIBLE instead of OPTIMAL
- Print the intermediate objective value and solution and decide if it's "good enough"
 - For tough problems, no guarantee that you are close to optimal!
 - best_bound in response stats gives best LB (when minimizing)
 or UB (when maximizing) proved so far for optimal value

Quick & Dirty Optimization

- Helpful: set log_search_progress param to True
 - Prints every time a new best solution is found
- Sometimes helpful: custom solution callback
 - Called each time any new feasible solution is found

```
class BestSolutionFinder(cp_model.CpSolverSolutionCallback):
    def __init__(self, minimizing=True):
        cp_model.CpSolverSolutionCallback.__init__(self)
        self.minimizing = minimizing
        self.best_value = (1 if minimizing else -1) * float('inf')
    def on_solution_callback(self):
        obj = self.ObjectiveValue()
        if (self.minimizing and obj < self.best_value) \
            or (not self.minimizing and obj > self.best value):
```

```
self.best_value = self.ObjectiveValue()
print(f'New best value: {self.best_value}')
```

solver = cp_model.CpSolver()
solver.parameters.num_search_workers = 6
solver.parameters.log_search_progress = True
Our solution callback is redundant to logging
best = BestSolutionFinder()
solver.SolveWithSolutionCallback(model, best)

Approximating Feasibility

- What if non-optimization problem is too hard to solve?
- Can't interrupt early for a "good enough" solution; intermediate solution is feasible or it is not
- What if we were OK with a "not quite feasible" solution?
 - What could "not quite feasible" mean?

Soft Constraints

- Constraints like Add (. . .) are hard constraints
 - Must be satisfied
- **Soft constraints**: can be violated, but incurs a penalty
- Transform feasibility problem into optimization problem by minimizing penalty
 - Allows interrupting early if you're OK with some violated constraints
 - Can sometimes be faster than solving with hard constraints!

Ex: Soft Graph Coloring

• Hard constraint:

for every edge (u, v), $color(u) \neq color(v)$

• Soft constraint

penalty = num. edges (u, v) with color(u) = color(v)

• Can count number of violated constraints using reification

Øø

Optimizing Pairs of

- **Objectives** to add soft constraint with penalty *p* but problem already optimizes (say, minimizes) objective *o*?
 - Key idea: why not minimize both?
 - Attempt 1: minimize o + p
 - **Problem:** *o* and *p* may be interrelated
 - E.g., minimum possible value of o may be lower when p = 1 than when p = 0

Optimizing Pairs of

- **Objectives**oid interdependence by minimizing p first and using o to break ties
 - Aka, minimize (p, o) over the **lexicographic ordering**
 - How to make sure that *p* is minimized before *o*?
 - Attempt 2:

• minimize Mp + o, where $M = o_{max} - o_{min} + 1$

• Can generalize to maximization

Øø

General CP-SAT Modeling

- The afraid to add new variables/constraints, but be aware of roughly how many you have $(O(n)? O(n^3)?)$
 - Try to restrict range of values for each variable
 - Use boolean variables/constraints when possible
 - Experiment with hard vs. soft constraints
 - If possible, split into subproblems, then combine solutions
 - Make it easy to toggle constraints on/off for debugging

MIP vs CP-SAT

	MIP		CP-SAT	
•	Supports infinite bounds		Better handles combinatorial	
•	Supports fractional variables and		problems, Booleans	
	coefficients	•	More sophisticated interface	
•	Better handles LP-style problems		Lots of specialized modeling objects	
	(with integers mixed in)	•	Modeling may be easier	
•	Reification of constraints is possible,	•	Models may be more extensible	
	but requires atgebraic modeling thek		Reification is easier, more performant	

- Neither is clearly more performant in general
- Neither is an evolution of the other