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1 Introduction

Well done, you’ve learned a lot throughout the many weeks of the semester and are equipped with a lot of
tools to solve a variety of difficult problems! Last week, we introduced Constraint Programming. Today, we
will continue that discussion further, and solve some more fun problems.

2 Boolean Variables

Many of the constraints we introduced last week were with respect to integer variables. There exist some
constraints that only work with boolean variables. Recall, to instantiate a boolean variable, we write:

model.NewBoolVar(name)

and under the hood, this is absolutely equivalent to writing:

model.NewIntVar(0, 1, name)

The only difference that separates boolean variables from other integer variables is that the former can only
take on values ∈ {0, 1}.

The following expressions exist to allow for boolean logic:

• boolvar.Not() =⇒ negates a boolean variable boolvar

• model.AddBoolOr([v1, v2, ..., vn]) =⇒ where v1, v2, ..., vn are boolean variables, creates the
expression v1 ∨ v2 ∨ ... ∨ vn

• model.AddBoolAnd([v1, v2, ..., vn]) =⇒ where v1, v2, ..., vn are boolean variables, creates the
expression v1 ∧ v2 ∧ ... ∧ vn

• model.AddImplication(b1, b2) =⇒ where b1, b2 are boolean variables, creates the expression
b1 =⇒ b2

3 Magic Sequence

Let’s introduce the first problem that we will solve:

A magic sequence is a sequence s0, s1, ..., sn where si equals the number of occurrences of value i in the
sequence.

As an example, 2, 1, 2, 0, 0 is a magic sequence with n = 4 (length 5). We see that s0 = 2, and indeed, there
are 2 occurrences of the value 0 in the sequence. Additionally, s1 = 1, and there is indeed 1 occurrence of
the value 1. And so on.

Suppose we wanted to determine if a magic sequence exists for any value of n. Moreover, if a magic sequence
exists, we want to find what the sequence is!



3.1 Solving with Constraint Programming

Of course, we will use constraint programming to solve this! To do so, we need to define three things: the
variables, their values, and the constraints.
The variables should be relatively straightforward: we will have a variable for each si. But what are the
values that an arbitrary si can take on? Well, the lower bound is 0, and the upper bound is the length of
the sequence, n+ 1.

Pause

Take a moment to ensure you understand why the upper bound is n + 1. Hint: it follows from the
definition of a magic sequence.

Great. But what about the constraints? The main constraint of the problem is that si = j, where j denotes
the number of occurrences of i in the sequence. But how do we actually encode this? There are a lot of
moving parts with the varying i and j, so it seems like indicators/booleans would be helpful. Moreover, we
define:

eq[i, j] =

{
1 si = j

0 else
for 0 ≤ i ≤ n, 0 ≤ j ≤ n

That is, eq[i, j] represents a variable, that our solver will determine the value of, but it is our responsi-
bility ensure that the value given to the variable matches the definition. While these variables are helpful,
they are not yet tied to our variables yet. That is, there is no way of our “solver” knowing that si = j.
We do this by implementing a constraint. Remember, we want to implement the idea “if eq[i, j] = 1 then
si = j”. How do we go about implementing an implication as a constraint?

3.2 Reification

To this point, we have only looked at constraints that involve variables. But what if we want to make
constraints based on other constraints? What if we want to implement a constraint that is an implication?
For that, we need reification.
As a motivating example, suppose we wanted to implement the idea that “If x is equal to 5, then y must be
greater than 7”. Until now, we have no way of implementing this constraint.

Reification treats constraints as first-class citizens, and can accomplish our goal by introducing a new boolean
variables b which is true if and only if constraint c holds (b ⇐⇒ c). Essentially, we are “naming” the
truth value of c with a variable b.

With respect to our motivating example, let’s say we have an integer variable x ∈ [0..10], and another
variable y. We want to encode the constraint that “if x = 5 then y > 7”. To do this, we introduce a boolean
variable is x five, which is 1 when x = 5, and 0 otherwise.
Then, we tie together the boolean indicator with the constraint:

x == 5 ⇐⇒ is x five = 1

We can then add further constraints using is x five such as is x five = 1 =⇒ y > 7
In code, the above would look like this:

is_x_five = model.NewBoolVar("is_x_five")

model.Add(x == 5).OnlyEnforceIf(is_x_five)

model.Add(x != 5).OnlyEnforceIf(is_x_five.Not())

model.add(y > 7).OnlyEnforceIf(is_x_five)
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Implementation Note

OR-Tools uses half-reification. Instead of b ⇐⇒ c, it supports b =⇒ c. Thus, to impose the
desired logic, we can fully reify by adding both b =⇒ c and b =⇒ c.

This idea of reification is done with:

constraint.OnlyEnforceIf(bool_var)

Unfortunately, OR-Tools is limited in the constraints that it supports for OnlyEnforceIf. It will
only work for constraints that are:

• Add

• AddBoolOr

• AddBoolAnd

• AddLinearExpressionInDomain

3.3 Return to Magic Sequence

With reification, we can encode our constraints. That is, we need:

si = j ⇐⇒ eq[i, j] = 1

We can do this in code via:

model.Add(S[i] == j).OnlyEnforceIf(eq[i, j])

model.Add(S[i] != j).OnlyEnforceIf(eq[i, j].Not())

where eq[i, j] has been defined as a BoolVar, and s is an array of values si.

There is still one more constraint we need to impose: that si is actually equal to the number of occurrences
of i in the sequence.
For this, we can consider:

∑n
j=0 eq[j, i], and set si equal to that as a constraint.

In (pseudo)code:

for 0 <= i <= n:

model.Add(

s[i] == sum(eq[j, i] for 0 <= j <= n

)

And this fully solves the problem

4 Non-contiguous Domains

Recall that with Constraint Programming, our solver requires our variables to come from discrete, finite
domains. For example, when we define the following variable:

x = model.NewIntVar(0, 10, ’x’)

we are saying that x ∈ [0..10]. However, not all variables may come from a single integer interval. Perhaps,
we instead wish to define a finite set of values that a variable can take on. Or perhaps our variable comes
from multiple, discontiguous intervals. Both options are available to us.

To do this with CP-SAT, we use the method:
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model.NewIntVarFromDomain(domain, name)

This requires us to define a domain. For this, you must use the “Domain Class” offered by CP-SAT a la:

cp_model.Domain.FromValues([0, 2, 4, 6, 8])

cp_model.Domain.FromIntervals([0, 2], [6, 8])

The first domain yields the set of values {0, 2, 4, 6, 8}. The second domain yields the set of values {0, 1, 2, 6, 7, 8}.

4.1 Linear Expressions on Domains

Moreover, defining domain may be helpful beyond just defining the scope of a variable, but also the scope of
an expression. We have the ability to enforce that the result of a linear expression must fall into a domain.
Take the following example:

cp_model.AddLinearExpressionInDomain(

x + y,

cp_model.Domain.FromValues([0, 2, 4])

)

The above will ensure that it only considers values of x, y such that (x+ y) ∈ {0, 2, 4}.

5 Shipping Allotments Problem

Consider the following problem: A shipping company has n ships with carrying capacity of 100 each. We
have a bunch of shipments of varying sizes, and we want to load them onto the ships. However, we have a
goal to maximize the number of ships which have at least 20 capacity unused (we might want that extra
space in case of an emergency!). NOTE: The words “weight” and “size” will be used interchangeably.

They mean the same thing in this problem.

5.1 Attempt 1: Greedy

We may choose to attempt to solve this problem in a greedy fashion. Roughly, we may choose to sort the
shipments in decreasing order of weights. Then, for each remaining shipment, allocate it to the least-filled
ship. As an example, suppose we had four shipments with weights 45, 45, 40, 40 and we had two ships.

Following our procedure, we would allocate 45 to the least filled ship. In this case, both ships are equally

unfilled, so we arbitrarily break ties, and give it to ship 1. The next 45 will be placed on ship 2. Then, for
the first 40, we arbitrarily break the tie and assign it to ship 1, and the second 40 goes to ship 2.
By following the procedure, both ships have used 85 capacity, meaning that we have no ships with the desired
20 unused capacity.

Notice, however, that we could have instead allocated the two shipments of 45 to ship 1, and the remaining
two shipments of 40 to ship 2. Here, we have one ship (ship two) with the 20 unused capacity. So it seems
that this initial approach does not work.
Bonus: As an exercise to the reader: Does a dynamic programming solution exist for this problem? If so,
what is its time complexity? If not, what is the bottleneck?

5.2 Attempt 2: Constraint Programming

We solve the problem via constraint programming. First, let us formalize the problem:

• We have s ships.
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• Each ship has capcity of 100, and we are aiming to maximize the number of ships with 20 capacity free

• As input, we are given a list of pairs (w, c), where w denotes the weight of a shipment, and k denotes
the quantity of that shipment. Shipments of the same weight can be distributed among ships.

First, we must define our variables. Remember, our variables are the quantities that change, and whose
values should indicate the solution to our problem. Logically, we want to know the amount of shipments of
each size that are on each ship. So, that is exactly what our variables will be:

nk,s = The number of shipments of size k on ship s

The lower bound for each of these variables is 0, but the upper bound depends on the quantity of shipments
available. That is, for an arbitrary shipment w, we have that nw,s ≤ c, where c is the total amount of that
shipment at the start.

Implementing this in (pseudo)code:

for (size, count) in shipments:

for each ship s:

n[size, s] = model.NewIntVar(0, count)

Now, we turn to the coveted constraints. Let’s start with the easy ones:

Constraint 1: Each shipment must be on exactly one ship.
Suppose we have shipments (w, c), where w is the weight, and c is the quantity of that shipment. Then, the
sum of the number of shipments of size w across all ships (

∑
s nw,s) over all must be equal to c. In code:

for (size, count) in shipments:

model.Add(

sum(n[size, s] for s in SHIPS) == count

)

Constraint 2: Next, we must ensure that the sum of the shipments on a single ship does not exceed the
ship’s capacity of 100. To do this, for each ship, count the number of identically weighted shipments on

it, multiply it by the weight, and add them together to get the total weight. And ensure this is less than
capacity:

for s in SHIPS:

model.Add(

sum(size * n[size, s] for (size, _) in shipments) <= SHIP_CAPACITY

)

Constraint 3: Lastly, we aim to maximize the number of ships with 20 free capacity. For this, we turn to
reification:

Define: ship free[s] to be TRUE if and only if ship s has 20 free capacity. Then, for each ship, determine
the load that it is carrying, and enforce:

ship load ≤ (SHIP CAPACITY)− 20 ⇐⇒ ship free[s] = TRUE

Lastly, we must add to the solver the aim of optimizing the number of ships with free capacity. Students
should refer to the code on the website for the full implementation of everything above.

5



6 An Aside on Speed Up

CP-SAT allows us to adjust internals to speed up the search. However, this is often far less important than
just having a good encoding. Regardless...

• CP-SAT allows us to run solver computation in parallel across multiple threads

• We can give the model a hint to try setting a variable to a specified value. For example, suppose you
wanted to model to try setting x = 5 first. You can do this with model.AddHint(x, 5)

Generally, finding an optimal solution can take far longer than finding a feasible solution. This is because an
optimal solution is a feasible solution, but a feasible solution is not always an optimal solution. In practice,
we often don’t really care about having the true optimal value, but rather are content with something “close
enough”.

With CP-SAT, if solving an optimization problem, you can interrupt the solver early, with a keyboard
interrupt, and the solver will return a feasible solution instead of optimal.

However, what if we are solving a non-optimization problem? That is, what if a non-optimization problem is
too hard to solve? We can’t interrupt early for a “good enough” solution, because an intermediate solution
is either feasible or it is not. But what if we were OK with a “not quite feasible” solution? What could this
possibly mean?

7 Soft Constraints

Constraints like Add(...) are hard constraints in that they must be satisfied. Soft constraints are
constraints that can be violated, but incurs a penalty. Thus, we can transform a feasibility problem into an
optimization problem by minimizing penalty.

7.1 Example

Consider the classic graph coloring problem, where given a graph, we want to assign colors to its vertices so
that vertices that share an edge are different colors.
Up until now, we would introduce a hard constraint of:

∀(u, v) ∈ E, color(u) ̸= color(v)

We could instead introduce a soft constraint of:

penalty = number of edges(u, v) with color(u) = color(v)

7.2 Optimization with Soft Constraints

Soft constraints are cool, but they add a very interesting challenge when it comes to optimization problems.
Formally, suppose we are working on a problem which asks us to minimize some objective function o. We
then choose to introduce soft constraints, which yield penalty p. How do we optimize?

Clearly, since our goal is to minimize o, we should do that, but we also likely want our penalty to be small.
This can impose a very big challenge if o and p are inversely related.

It should make sense why such a scenario is likely – allowing a soft constraint to be violated likely improves
our objective, but we incur an increase in penalty. That is, the objective function is decreasing while the
penalty is increasing. How do we find the balance?

Idea 1: Minimize o+ p
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This doesn’t work. As a toy counterexample: suppose we have an objective o representing the cost of some
operation that we aim to minimize. And suppose there is penalty p incurred if we use more resources than
a specified threshold.

• Case A: We use low resources, incurring a penalty of p = 0, but our cost is o = 10

• Case B: We use some resources, incurring penalty of p = 1, which in turn improves our cost to o = 8

By minimizing o+ p, we would choose Case B, but this is problematic, as we are incurring a penalty. It is
likely more desirable to not incur the penalty and go with Case A.

Idea 2: Avoid the interdependence of o and p by minimizing p first, and using o to break ties.

This idea works, and we can implement this by using a large constant M and set up the combined objective
Mp+ o. A suitable choice for M is M = omax − omin + 1
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