

Lecture 11: Local Search

Ishaan Lal ilal@seas.upenn.edu

Logistics

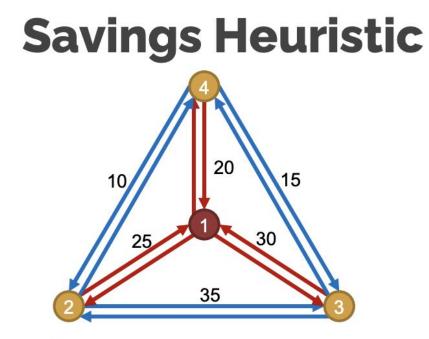
- Next week last Ishaan lecture
- Final class on 4/24
 - Project presentations (7-9 minutes, hard stop at 9)
 - All details regarding project presentations and final submission are on the master doc on the website

Savings Heuristic

- Pick any vertex x to be the "central vertex"
- Start with n 1 subtours: $x \to v \to x$ for all $v \in V x$
- For each edge (i, j), where $i, j \in V x$, compute its **savings** s(i, j)

 $\circ \quad s(i,j) = w(i,x) + w(x,j) - w(i,j)$

- Sort edges in decreasing order of savings
- Repeat until only one tour remains:
- Let (*i*, *j*) be the next edge in sorted order
- If edges (i, x) and (x, j) are in our subtours, and i, j are not already in the same tour: replace (i, x) and (x, j) by (i, j)



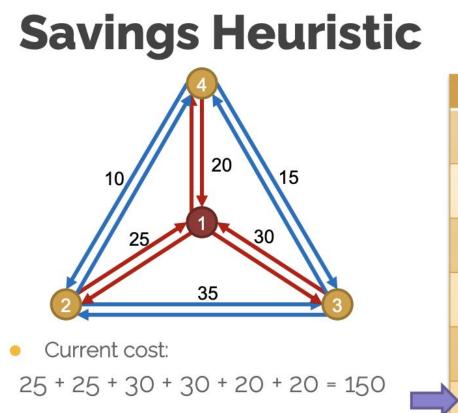
Current cost:

25 + 25 + 30 + 30 + 20 + 20 = 150

Savings Heuristic 20 15 30 35 Current cost:

25 + 25 + 30 + 30 + 20 + 20 = 150

(i , j)	Savings s(i,j)
(2,3)	w(2,1) + w(1,3) - w(2,3) = 25 + 30 - 35 = 20
(3,2)	w(3,1) + w(1,2) - w(3,2) = 30 + 25 - 35 = 20
(2,4)	w(2,1) + w(1,4) - w(2,4) = 25 + 20 - 10 = 35
(4, 2)	w(4,1) + w(1,2) - w(4,2) = 20 + 25 - 10 = 35
(3,4)	w(3,1) + w(1,4) - w(3,4) = 30 + 20 - 15 = 35
(4,3)	w(4,1) + w(1,3) - w(4,3) = 20 + 30 - 15 = 35



bit.	
(i , j)	Savings s(i,j)
(2,3)	w(2,1) + w(1,3) - w(2,3) = 25 + 30 - 35 = 20
(3,2)	w(3,1) + w(1,2) - w(3,2) = 30 + 25 - 35 = 20
(2,4)	w(2,1) + w(1,4) - w(2,4) = 25 + 20 - 10 = 35
(4,2)	w(4,1) + w(1,2) - w(4,2) = 20 + 25 - 10 = 35
(3,4)	w(3,1) + w(1,4) - w(3,4) = 30 + 20 - 15 = 35
(4,3)	w(4,1) + w(1,3) - w(4,3) = 20 + 30 - 15 = 35

Savings Heuristic Current cost: 25 + 25 + 20 + 15 + 30 = 115

	(i , j)	Savings s(i,j)
	(2,3)	w(2,1) + w(1,3) - w(2,3) = 25 + 30 - 35 = 20
	(3,2)	w(3,1) + w(1,2) - w(3,2) = 30 + 25 - 35 = 20
	(2,4)	w(2,1) + w(1,4) - w(2,4) = 25 + 20 - 10 = 35
	(4, 2)	w(4,1) + w(1,2) - w(4,2) = 20 + 25 - 10 = 35
~	(3,4)	w(3,1) + w(1,4) - w(3,4) = 30 + 20 - 15 = 35
	(4,3)	w(4,1) + w(1,3) - w(4,3) = 20 + 30 - 15 = 35

Savings Heuristi
 Current cost: 25 + 25 + 20 + 15 + 30 = 115

(i , j)	Savings s(i,j)
(2,3)	w(2,1) + w(1,3) - w(2,3) = 25 + 30 - 35 = 20
(3,2)	w(3,1) + w(1,2) - w(3,2) = 30 + 25 - 35 = 20
(2,4)	w(2,1) + w(1,4) - w(2,4) = 25 + 20 - 10 = 35
(4, 2)	w(4,1) + w(1,2) - w(4,2) = 20 + 25 - 10 = 35
(3,4)	w(3,1) + w(1,4) - w(3,4) = 30 + 20 - 15 = 35
(4,3)	w(4,1) + w(1,3) - w(4,3) = 20 + 30 - 15 = 35

...............................

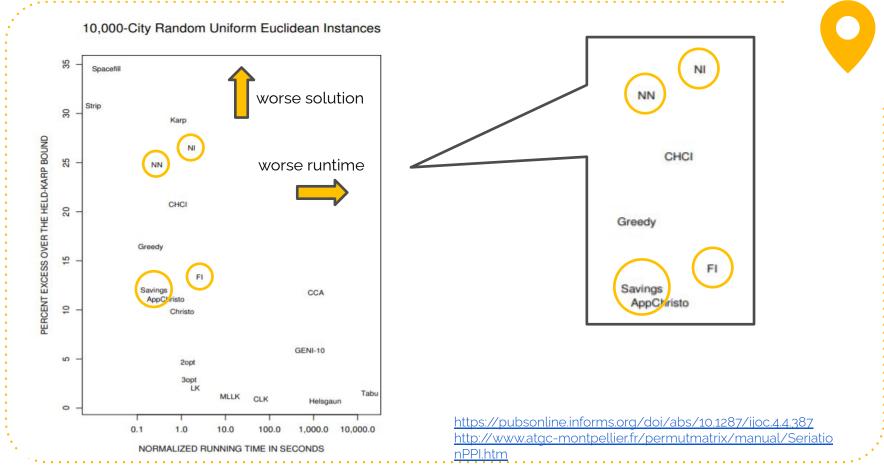
C

Savings Heuristic		
4	(i , j)	Savings
20	(2,3)	w(2, 1 = 2
10 15	(3,2)	w(3, 1 = 3
25 30	(2,4)	w(2, 1 = 2
2 35 3	(4,2)	w(4, 1 = 2
 Current cost: 25 + 25 + 20 + 15 + 20 - 115 	(3,4)	w(3, 1 = 3
25 + 25 + 20 + 15 + 30 = 115	(4,3)	w(4, 1 = 2

(i , j)	Savings s(i,j)
(2,3)	w(2,1) + w(1,3) - w(2,3) = 25 + 30 - 35 = 20
(3,2)	w(3,1) + w(1,2) - w(3,2) = 30 + 25 - 35 = 20
(2,4)	w(2,1) + w(1,4) - w(2,4) = 25 + 20 - 10 = 35
(4,2)	w(4,1) + w(1,2) - w(4,2) = 20 + 25 - 10 = 35
(3,4)	w(3,1) + w(1,4) - w(3,4) = 30 + 20 - 15 = 35
(4,3)	w(4,1) + w(1,3) - w(4,3) = 20 + 30 - 15 = 35

Savings Heuristic Current cost: 25 + 10 + 15 + 30 = 80

(i , j)	Savings s(i,j)
(2,3)	w(2,1) + w(1,3) - w(2,3) = 25 + 30 - 35 = 20
(3,2)	w(3,1) + w(1,2) - w(3,2) = 30 + 25 - 35 = 20
(2,4)	w(2,1) + w(1,4) - w(2,4) = 25 + 20 - 10 = 35
(4,2)	w(4,1) + w(1,2) - w(4,2) = 20 + 25 - 10 = 35
(3,4)	w(3,1) + w(1,4) - w(3,4) = 30 + 20 - 15 = 35
(4,3)	w(4,1) + w(1,3) - w(4,3) = 20 + 30 - 15 = 35



Vehicle Routing Problem

- Actually, the Savings heuristic was created to solve a generalization of the TSP:
- The Vehicle Routing Problem (VRP) also takes place in a weighted, complete graph
- Instead of one salesman, we have a fleet of vehicles which are all parked at a central vertex (the **depot**)
 - May or may not be a limit on the number of vehicles
- Goal: find routes starting and ending at the depot for each vehicle with minimum total weight so that each vertex is visited once by some vehicle

Constrained VRP

- In real life: why use a fleet of vehicles when you could have one vehicle that travels all the routes?
- There may be additional constraints for vehicles, e.g.:
 - Maximum distance a vehicle can travel
 - Carrying capacity of a vehicle, where each node has some volume to be delivered

0

Savings Heuristic for VRP

- Let x denote the depot
- Start with n 1 subtours: $x \rightarrow v \rightarrow x$ for all $v \in V x$
- For each edge (i, j), where $i, j \in V x$, compute its **savings** s(i, j)

• s(i,j) = w(i,x) + w(x,j) - w(i,j)

- Sort edges in decreasing order of savings
- Repeat until only one tour remains or we reach negative savings:
- Let (*i*, *j*) be the next edge in sorted order
- If edges (i, x) and (x, j) are in our subtours, and i, j are not already in the same tour: replace (i, x) and (x, j) by (i, j)...
 - …unless it would violate our constraints

Solving TSP with OR-Tools

- OR-Tools comes with a **routing solver** that can solve the TSP and VRP with much more complex constraints!
 - Pickups and drop-offs, time windows, penalties...
- The guide is pretty good:
 <u>https://developers.google.com/optimization/routing</u>
- Comes with many heuristics including NN, Savings, etc...
 - By default, solver automatically chooses a heuristic to use based on the problem at hand
- Note: the routing solver is optimized for getting a "good enough" solution to constrained problems, not exact solving huge TSPs

Recap: Heuristics

- Last week: *construction heuristics*
 - Start with nothing and build up a partial solution
 - Nearest neighbor, nearest/farthest insertion, savings
- This week: *improvement heuristics*
 - Start with any solution and try to find a better one
 - In particular: local search

Local Search

- Out of all possible solutions, consider some of them as "neighbors" in (undirected) neighborhood graph
 - Typically, two solutions are neighbors if we can transform one into the other by a simple operation
- Start with any solution node, and attempt to reach a better one by exploring its neighborhood
- Limit which moves are acceptable to make the graph directed
- In other words, start with any solution, and continuously tweak it to a better solution.

Terminating Local Search

- When should we give up exploring?
- Time bound: give up if it's taking too long
- **Step bound:** give up after some number of steps
 - Problem-specific knowledge will help here
- Improvement bound: give up if we have not improved our solution (enough)
 - Can combine with time/step bounds

Back to TSP

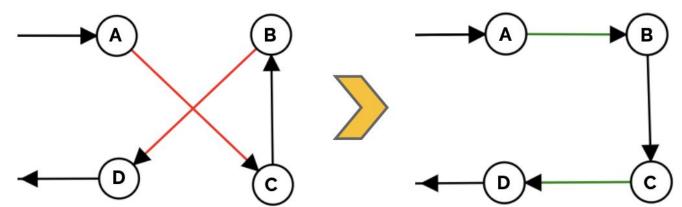
- Local search is natural for TSP
- Start with any tour, and try to improve it into a cheaper tour
- What's a reasonable "neighbor relation" on all tours?
 - What's a simple operation to transform one tour into another tour?

2-Adjacency and

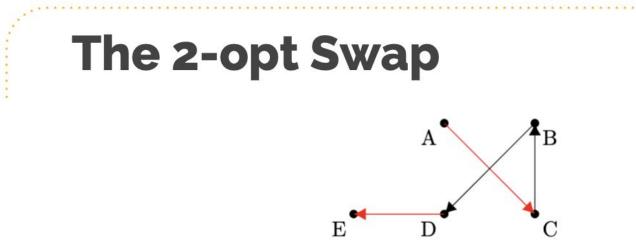
- **2-Optimality** We say TSP tours *T* and *T*' are **2-adjacent** if we can transform one into the other by deleting two edges and adding two edges
 - We say TSP tour *T* is **2-optimal** if there is no cheaper tour adjacent to *T*

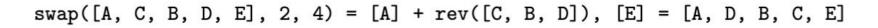
The 2-opt Swap

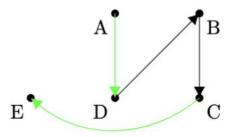
Idea: "uncross" the tour where it crosses over itself



• swap $(T, i, j) = T[1:i-1] + T[i:j]^R + T[j+1:n]$ • swap $([A, C, B, D], 2, 3) = [A] + [C, B]^R + [D] = [A, B, C, D]$





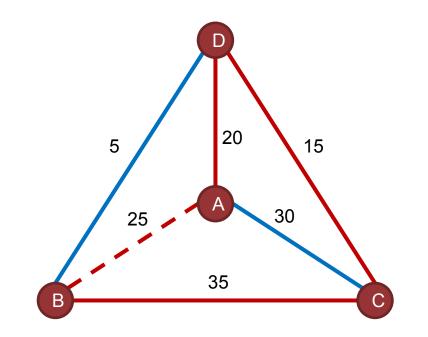


The 2-opt Heuristic


```
# attempt to improve tour T
2-opt(T):
    until cost(T) does not decrease:
    for each pair of indices i < j:
        if cost(swap(T,i,j)) < cost(T):
            let T = swap(T,i,j)</pre>
```

This heuristic *does not guarantee* you will find the optimal solution.

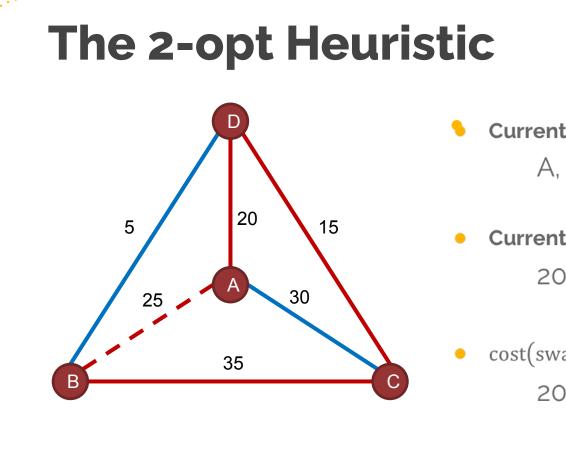
The 2-opt Heuristic



• Current tour: A, D, C, B

Current cost:

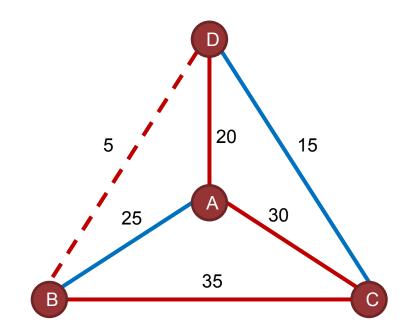
20 + 10 + 35 + 30 = 95



Current cost: 20 + 10 + 35 + 30 = 95

 $\operatorname{cost}(\operatorname{swap}(T, 1, 2)) = \operatorname{cost}([D, A, C, B])$ 20 + 30 + 35 + 5 = 90

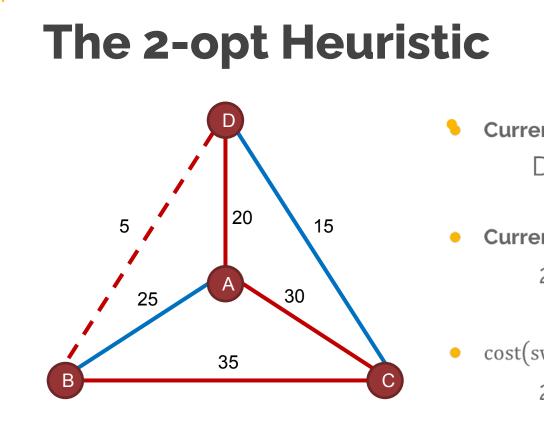
The 2-opt Heuristic



• Current tour: D, A, C, B

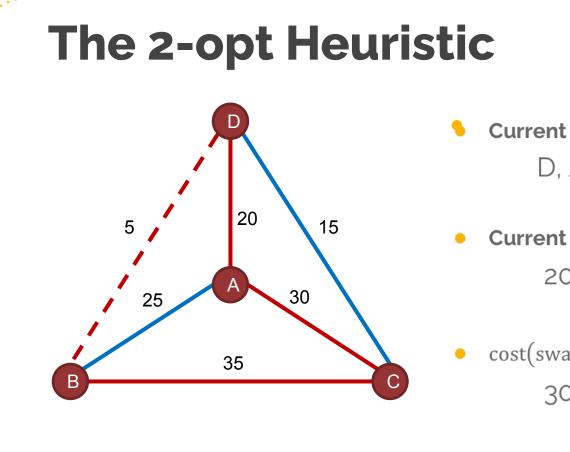
• Current cost:

20 + 30 + 35 + 5 = 90



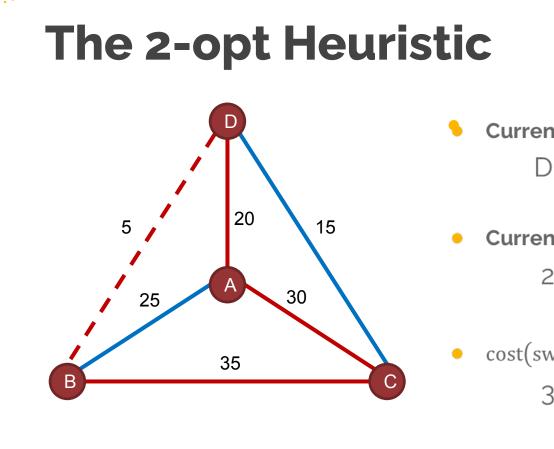
Current cost: 20 + 30 + 35 + 5 = 90

cost(swap(T, 1, 2)) = cost([A, D, C, B]):20 + 10 + 35 + 30 = 95



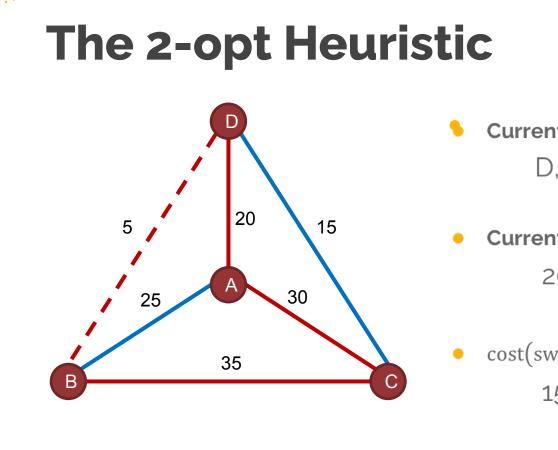
Current cost: 20 + 30 + 35 + 5 = 90

 $\operatorname{cost}(\operatorname{swap}(T, 1, 3)) = \operatorname{cost}([C, A, D, B])$ 30 + 20 + 5 + 35 = 90



Current cost: 20 + 30 + 35 + 5 = 90

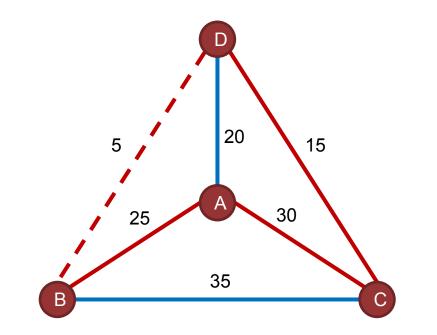
• cost(swap(T, 1, 4)) = cost([B, C, A, D]): 35 + 30 + 20 + 5 = 90



Current cost: 20 + 30 + 35 + 5 = 90

 $\operatorname{cost}(\operatorname{swap}(T, 2, 3)) = \operatorname{cost}([D, C, A, B])$ 15 + 30 + 25 + 5 = 75

The 2-opt Heuristic



- Current tour:D, C, A, B
- Current cost:

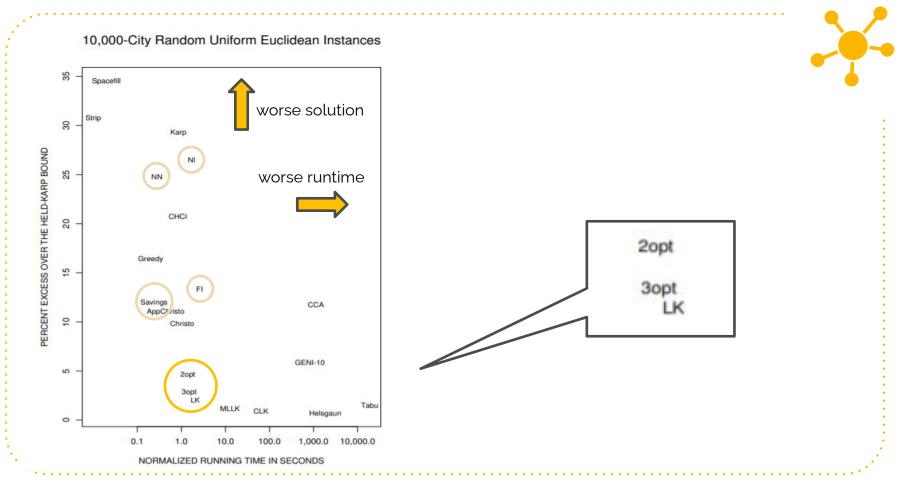
Ftc...

15 + 30 + 25 + 5 = 75

31

Generalizing 2-opt

- Can easily generalize 2-opt to **3-opt, 4-opt**, *k*-opt...
- Lin-Kernighan heuristic: start with k-opt for k = 2, then dynamically increase/decrease k over time based on several criteria
 - One of the most effective TSP heuristics!



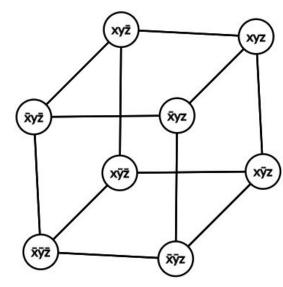
Are you sure 2-OPT doesn't always eventually return optimal?

Local Search for SAT

- Even though SAT isn't an optimization problem, we can still try to solve it with local search
- A "solution" will be any truth assignment, even if it isn't satisfying
- What is a reasonable "neighbor relation" on all assignments?

Neighborhood of Assignments assignment into another?

Flip the truth value of a single variable



• Which variable to flip?

- Which variable to flip?
- First attempt: let's just be greedy

- Which variable to flip?
- First attempt: let's just be greedy
- Idea: flip the variable that will make the most unsatisfied clauses become satisfied.

- Which variable to flip?
- First attempt: let's just be greedy
- Idea: flip the variable that will make the most unsatisfied clauses become satisfied.
- Issue: if flipping variable x changes 100 clauses from unsat → sat, but at the same time changes 200 clauses from sat → unsat, we aren't making progress in the right direction

- Which variable to flip?
- First attempt: let's just be greedy
- Idea 2: Flip the variable that maximizes the number of clauses that become satisfied
 - The **net change** in satisfied clauses

- Which variable to flip?
- First attempt: let's just be greedy
- Idea 2: Flip the variable that maximizes the number of clauses that become satisfied
 - The **net change** in satisfied clauses
- What termination criterion makes sense?
 - Steps!

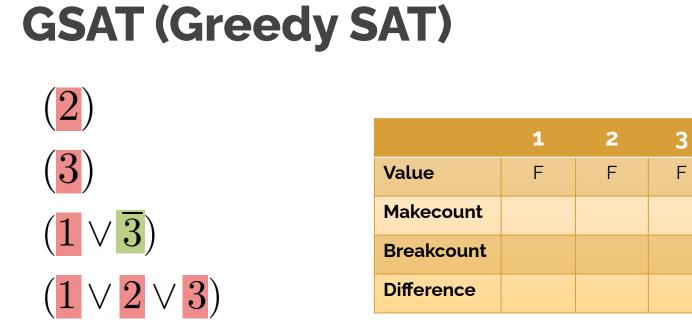
- Slight improvement to objective:
- **Makecount:** number of clauses that become satisfied if we flip a variable
- **Breakcount:** number of clauses that become unsatisfied if we flip a variable
- Instead of maximizing makecount, maximize diffscore
 = makecount breakcount
 - Corresponds to maximizing total number of satisfied clauses

GSAT Data Structures

- How do we efficiently calculate which flip is best?
- Unsat list: all currently unsatisfied clauses
- Occurrence lists: clauses containing each literal
- Makecount and breakcount lists: for each variable, store the number of clauses that become satisfied/unsatisfied if we flip
 - When we flip *x*, update counts for all other variables in clauses containing *x*

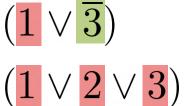
GSAT Flip Pseudocode

```
#• for simplicity assume v = T and we set v = F afterwards
pre flip(v):
  for clause C containing v:
    if n true lits [C] = 1: # case 1 -> 0
      add C to unsat list
      for literal l in C: make count[var(l)] += 1
      break count[v] -= 1
    else if n true lits[C] = 2: # case 2 -> 1
      let l = the other true literal in C
      break count[var(l)] += 1
  for clause C containing \overline{v}:
    # false -> true case is essentially symmetric
```

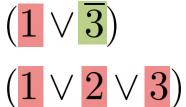


We started with a "random" assignment. It just happened to be (F, F, F).

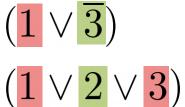




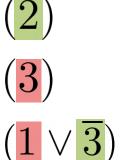
	1	2	3
Value	F	F	F
Makecount	1	2	2
Breakcount	0	0	1
Difference	1	2	1



	1	2	3
Value	F	F	F
Makecount	1	2	2
Breakcount	0	0	1
Difference	1	2	1

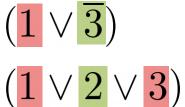


	1	2	3
Value	F	Т	F
Makecount			
Breakcount			
Difference			

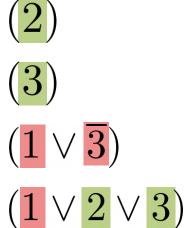


 $(1 \lor 2 \lor 3)$

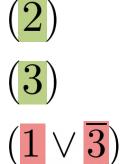
	1	2	3
Value	F	Т	F
Makecount	0	0	1
Breakcount	0	2	1
Difference	0	-2	0



	1	2	3
Value	F	Т	F
Makecount	0	0	1
Breakcount	0	2	1
Difference	0	-2	0

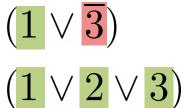


	1	2	3
Value	F	Т	Т
Makecount			
Breakcount			
Difference			



 $(1 \lor 2 \lor 3)$

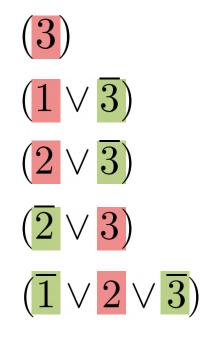
	1	2	3
Value	F	Т	Т
Makecount	1	0	1
Breakcount	0	1	1
Difference	1	-1	0



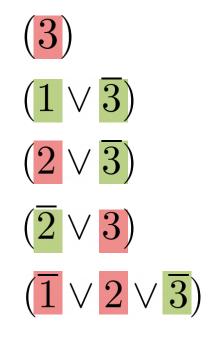
	1	2	3
Value	т	Т	Т
Makecount	0	0	0
Breakcount	1	1	1

Incompleteness

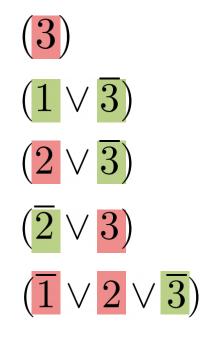
- Unlike DPLL, GSAT (and many local search algorithms in general) is **incomplete**
 - May not necessarily find an optimal/feasible solution even given unlimited time
- May start at node that can't reach any feasible/optimal node or get stuck in a cycle/local optimum



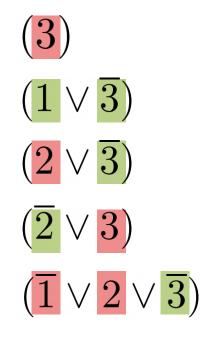
	1	2	3
Value	F	F	F
Makecount	0	0	1
Breakcount	0	1	2
Difference	0	-1	-1



	1	2	3
Value	т	F	F
Makecount			
Breakcount			



	1	2	3
Value	т	F	F
Makecount	0	0	1
Breakcount	0	1	2



	1	2	3
Value	т	F	F
Makecount	0	0	1
Breakcount	0	1	2
Difference	0	-1	-1

Avoiding local optima

- Can use a technique we've seen before...
- Aggressive **restarts**: whenever we can't greedily increase number of satisfied clauses, restart with a new random assignment

Towards a better algorithm

- Might still just repeatedly get stuck in local maxima
- How can we explore the search space more loosely to escape?
- Also, our greedy heuristic is slow: requires checking all variables at each step

- For now, let's just consider 2-SAT
- Simplified WalkSAT algorithm:
 - Start with any assignment of φ
 - Arbitrarily pick a clause C that is not satisfied
 - Randomly flip the value of one of C's literals
- "Random walk" might never finish!

1

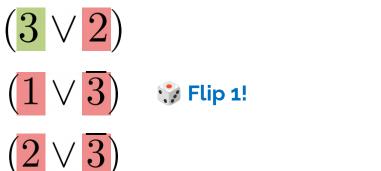
F

2

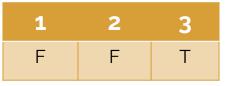
F

3

F



 $(\overline{2} \lor 3)$



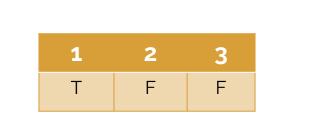
2

F

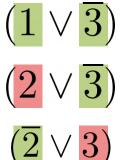
3

Т

🎲 Flip 2!



67

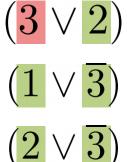


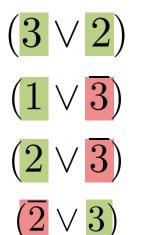
 $(3 \lor 2)$

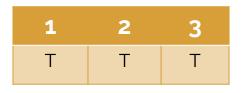


3

Т

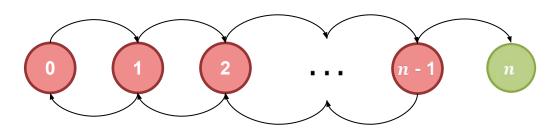






Analyzing Simplified

- For now, let's just consider 2-SAT
- Simplified WalkSAT is mathematically "nice"
- Suppose φ has a satisfying assignment α
- *State* of WalkSAT: how many variables in the current assignment agree with *α*?



Let our "current" assignment be $\mathbf{S_t}$ and let the true assignment be $\mathbf{S^*}$

U t		
x ₁	F	
x ₂	F	
x ₃	F	
x ₄	F	
x ₅	Т	

S

5		
x ₁	Т	
x ₂	F	
x ₃	F	
X ₄	Т	
x ₅	Т	

C*

State = 3

State = 5

Both variables in the unsatisfied clause we chose happen to differ from S*

	t	
x ₁	F	
x ₂	F	
x ₃	F	
x ₄	F	
x ₅	Т	

Г
=
=
Γ
Г

S*

State = 3

C

Case 1

State = 5

Both variables in the unsatisfied clause we chose happen to differ from S*

S _t					
x ₁	F				
x ₂	F				
x ₃	F				
x ₄	F				
x ₅	Т				

C

Case 1

3					
x ₁	Т				
x ₂	F				
x ₃	F				
X ₄	Т				
× ₅	Т				

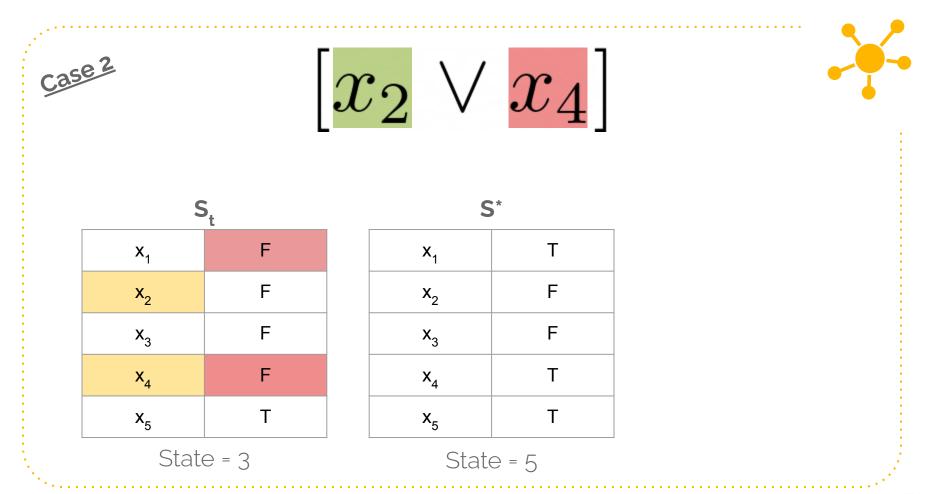
C*

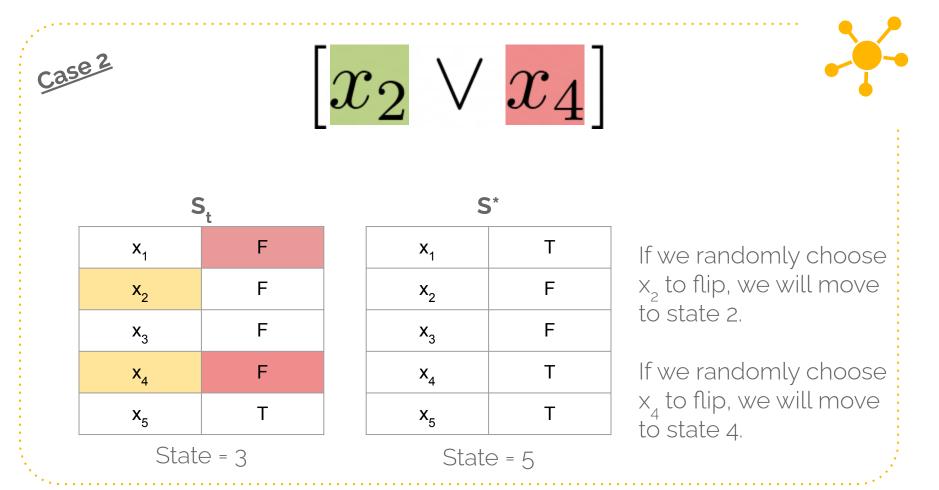
If we randomly choose x₁ to flip, we will move to state 4.

If we randomly choose x₄ to flip, we will move to state 4.

State = 3

State = 5





Probability of "making progress"

$\Pr[\mathtt{state}_{t+1} = i+1 \mid \mathtt{state}_t = i] \ge 1/2$

Probability of "going backwards"

 $\Pr[\mathtt{state}_{t+1} = i - 1 \mid \mathtt{state}_t = i] \le 1/2$

Analyzing Simplified WalkSAT

unsatisfied clause

- At least ½ probability of advancing to next state
 - If we reach state n, done
- In expectation, satisfying assignment will be found in $\mathcal{O}(n^2)$ steps

From 2-SAT to 3-SAT

- Intuition behind simplified WalkSAT running time: we're at least as likely to move forward as backwards, so given enough time we'll get lucky
- Who cares about 2-SAT? Not NP-complete.
- OK, so let's just do the same procedure for 3-SAT

The Problem with 3-SAT

- Probability of moving to next state is at least 1/3
- Probability of moving backwards to previous state can be as bad as 2/3!
- Intuition: we're "pulled" backwards, and the more steps we take the farther we are from our goal
- Expected runtime: $O(2^n)$

4

A Smarter 3-CNF WalkSAT

- Idea: since we move farther "backwards" the longer we run, we should not run for long
- Can utilize aggressive **restarts**
 - If we don't find a satisfying assignment in 3n steps, restart
- Expected runtime: $O\left(\left(\frac{4}{3}\right)^n\right)$
 - Assuming we start from a random assignment

WalkSAT in Practice

 In practice, rather than just rely on randomness, we'll mix random walks and greediness

• WalkSAT algorithm:

- Start with any assignment of φ
- Arbitrarily pick a clause C that is not satisfied
- With fixed probability p:
 - Randomly flip the value of one of *C*'s literals
- Else with probability 1 p:
 - Flip literal in C to maximize number of clauses that become satisfied

Choosing a Mixing ProbabilityWhat to choose for the mixing probability *p*?

• Prof. Charles Elkan (UCSD):

For random hard 3SAT problems (those with the ratio of clauses to variables around 4.25) p = 0.5 works well. For 3SAT formulas with more structure, as generated in many applications, slightly more greediness, i.e. p < 0.5, is often better.

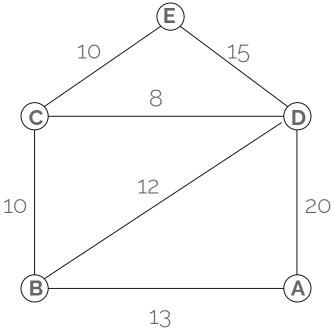
- Best to determine experimentally for your problem
 - For industrial (non-random) and unsatisfiable SAT instances, WalkSAT is probably much worse than CDCL

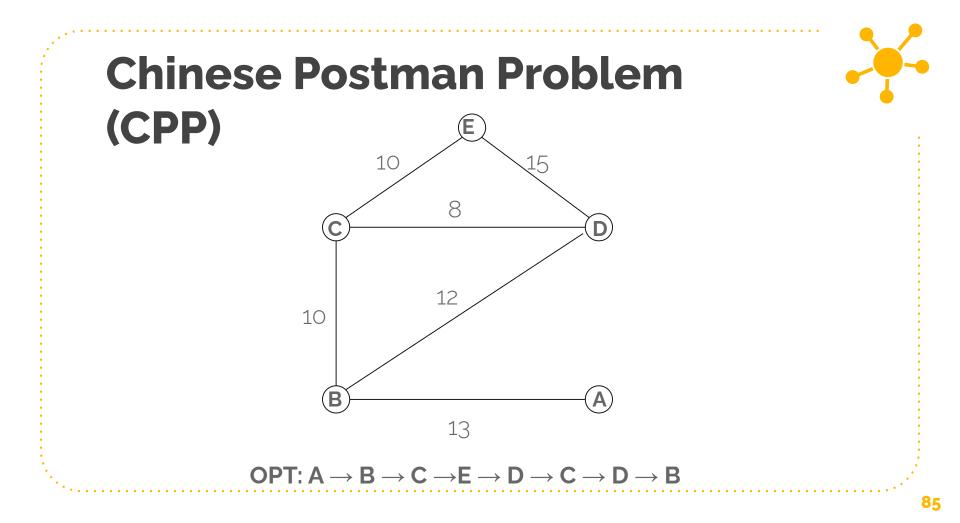
4

Chinese Postman Problem (CPP) • Studied by Chinese mathematician Kwan Mei-Ko in 1960

- Given an undirected weighted graph G, what is the **least** weight traversal of the graph that visits every edge at least one time?
- Example: A postman delivering letters wants to know the optimal route that traverses every street in a given area.

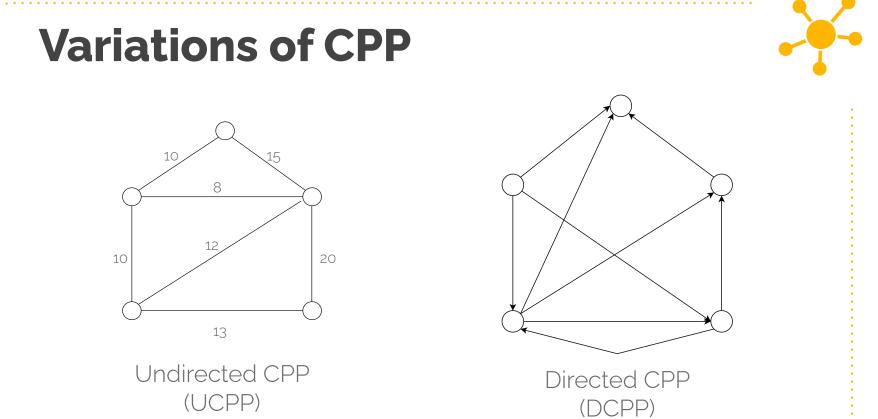
Chinese Postman Problem (CPP)





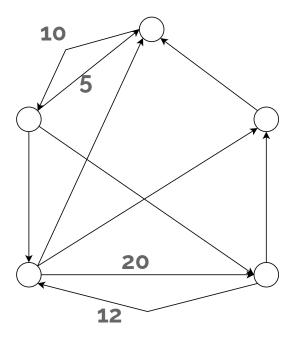
Chinese Postman Problem (CPP) • CPP can be solved in Polynomial Time.

- O(n³) solution using T-joins
- Directed CPP is also Poly-time solvable O(V²E)
- CPP can be solved in Polynomial Time.



NY Street Sweeper

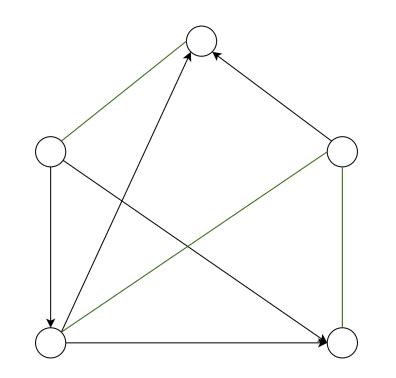
Variations of CPP



Windy CPP

- For some pairs of vertices, edges exist in both directions, but they have different weight.
- WCPP is NP-Hard

Variations of CPP



Mixed CPP

- Graph has a mixture of directed edges and undirected edges
- Mix of one-way and two-way streets
- Undirected edges only need to be traversed in one direction
- MCPP is NP-Hard

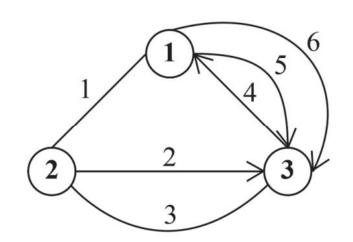


Fig. 1. The original MCPP problem in multigraph

Step 1:

• Replace undirected edges with parallel edges

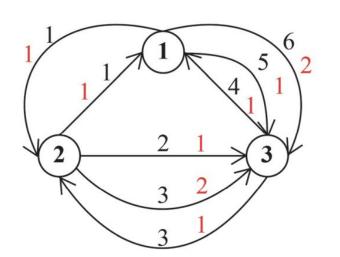


Fig. 2. The results of numbering each parallel arc

Step 1:

- Replace undirected edges with parallel edges
- Red numbers are indices for edges pointing between the same pair of vertices.

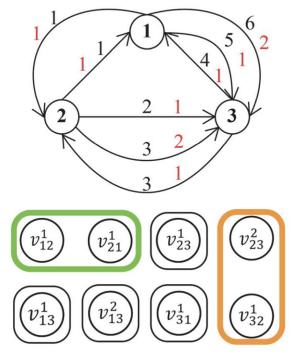


Fig. 3. The vertices and clusters of transformed problems

Step 2:

- Create a vertex for each edge.
- Vertices in the same colored box represent the edges that create an undirected edge.

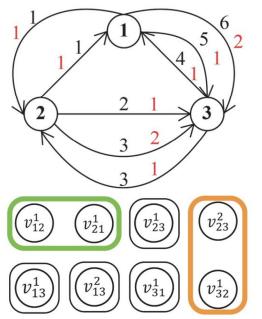


Fig. 3. The vertices and clusters of transformed problems

Step 3:

• Determine the weight on the edge between all pairs of vertices

 $c(v_{ab}^{k_1}, v_{cd}^{k_2}) = d_{bc} + c_{cd}^{k_2}$

d_{bc} is the shortest distance between vertices b and c in the original graph.

 $c(v_{21}^1, v_{31}^1) = d_{13} + c_{31}^1$ = (1+2) + 4

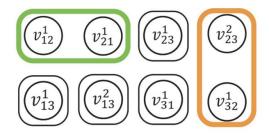


Fig. 3. The vertices and clusters of transformed problems

		1	2	3	4	5	6	7	8
		v_{12}^1	v_{13}^1	v_{13}^2	v_{21}^{1}	v_{23}^{1}	v_{23}^2	v_{31}^1	v_{32}^{1}
1	v_{12}^1	-	6	7	1	2	3	6	5
2	v_{13}^1	5	-	10	4	5	6	4	3
3	v_{13}^2	5	9	-	4	5	6	4	3
4	v_{21}^1	1	5	6	- 1	3	4	7	6
5	v_{23}^{1}	5	9	10	4	-	6	4	3
6	v_{23}^2	5	9	10	4	5	-	4	3
7	v_{31}^1	1	5	6	2	3	4	-	6
8	v_{32}^1	2	6	7	1	2	3	6	-

Step 4:

• Choose your favorite TSP algorithm!