
Lecture 11:
Local Search
Ishaan Lal ilal@seas.upenn.edu

CIS 1921

mailto:ilal@seas.upenn.edu


Logistics
● Project check-in now due Monday!
● Next week last Ishaan lecture
● Final class on 4/24

○ Project presentations (7-9 minutes, hard stop at 9)
○ All details regarding project presentations and 

final submission are on the master doc on the 
website

2



Savings Heuristic
●  

3

















11

worse solution

worse runtime

https://pubsonline.informs.org/doi/abs/10.1287/ijoc.4.4.387
http://www.atgc-montpellier.fr/permutmatrix/manual/Seriatio
nPPI.htm

https://pubsonline.informs.org/doi/abs/10.1287/ijoc.4.4.387
http://www.atgc-montpellier.fr/permutmatrix/manual/SeriationPPI.htm
http://www.atgc-montpellier.fr/permutmatrix/manual/SeriationPPI.htm


Vehicle Routing Problem
● Actually, the Savings heuristic was created to solve a 

generalization of the TSP:
● The Vehicle Routing Problem (VRP) also takes place in a 

weighted, complete graph
● Instead of one salesman, we have a fleet of vehicles 

which are all parked at a central vertex (the depot)
○ May or may not be a limit on the number of vehicles

● Goal: find routes starting and ending at the depot for each 
vehicle with minimum total weight so that each vertex is 
visited once by some vehicle

12



Constrained VRP
● In real life: why use a fleet of vehicles when you could 

have one vehicle that travels all the routes?
● There may be additional constraints for vehicles, e.g.:

○ Maximum distance a vehicle can travel
○ Carrying capacity of a vehicle, where each node has 

some volume to be delivered

13



k



Solving TSP with OR-Tools
● OR-Tools comes with a routing solver that can solve the TSP and 

VRP with much more complex constraints!
○ Pickups and drop-offs, time windows, penalties...

● The guide is pretty good: 
https://developers.google.com/optimization/routing

● Comes with many heuristics including NN, Savings, etc...
○ By default, solver automatically chooses a heuristic to use based on 

the problem at hand
● Note: the routing solver is optimized for getting a “good enough” 

solution to constrained problems, not exact solving huge TSPs

15

https://developers.google.com/optimization/routing


Recap: Heuristics
● Last week: construction heuristics

● Start with nothing and build up a partial solution
● Nearest neighbor, nearest/farthest insertion, savings

● This week: improvement heuristics
● Start with any solution and try to find a better one
● In particular: local search

16



Local Search
● Out of all possible solutions, consider some of them 

as “neighbors” in (undirected) neighborhood graph
○ Typically, two solutions are neighbors if we can 

transform one into the other by a simple operation
● Start with any solution node, and attempt to reach a 

better one by exploring its neighborhood
● Limit which moves are acceptable to make the 

graph directed
● In other words, start with any solution, and 

continuously tweak it to a better solution.
17



Terminating Local Search
● When should we give up exploring?
● Time bound: give up if it’s taking too long
● Step bound: give up after some number of steps

○ Problem-specific knowledge will help here

● Improvement bound: give up if we have not 
improved our solution (enough)
○ Can combine with time/step bounds

18



Back to TSP 
● Local search is natural for TSP
● Start with any tour, and try to improve it into a 

cheaper tour
● What’s a reasonable “neighbor relation” on all tours?

○ What’s a simple operation to transform one tour into another 
tour?

19



2-Adjacency and 
2-Optimality 

20







 

The 2-opt Heuristic

23

This heuristic does not guarantee you will find the optimal solution.



The 2-opt Heuristic

24

D

B C

A

35

20 15

25 30

5

● Current tour:

A, D, C, B

● Current cost:

20 + 10 + 35 + 30 = 95



The 2-opt Heuristic

25

D

B C

A

35

20 15

25 30

5

●  



The 2-opt Heuristic

26

D

B C

A

35

20 15

25 30

5

● Current tour:

D, A, C, B

● Current cost:

 20 + 30 + 35 + 5 = 90



The 2-opt Heuristic

27

D

B C

A

35

20 15

25 30

5

●  



The 2-opt Heuristic

28

D

B C

A

35

20 15

25 30

5

●  



The 2-opt Heuristic

29

D

B C

A

35

20 15

25 30

5

●  



The 2-opt Heuristic

30

D

B C

A

35

20 15

25 30

5

●  



The 2-opt Heuristic

31

D

B C

A

35

20 15

25 30

5

● Current tour:

D, C, A, B

● Current cost:

 15 + 30 + 25 + 5 = 75

● Etc...



Generalizing 2-opt
 

32



33

worse solution

worse runtime



Are you sure 2-OPT doesn’t always 
eventually return optimal?

YES

https://cs.stackexchange.com/questions/73784/why-doesnt-2-opt-return-an-optimal-solution


Local Search for SAT
● Even though SAT isn’t an optimization problem, we 

can still try to solve it with local search
● A “solution” will be any truth assignment, even if it 

isn’t satisfying
● What is a reasonable “neighbor relation” on all 

assignments?

35



Neighborhood of 
Assignments● What’s a simple operation to transform one 

assignment into another?

36

Flip the truth value 
of a single variable 



Neighborhood of 
Assignments● What’s a simple operation to transform one 

assignment into another?

37

Flip the truth value 
of a single variable 



GSAT (Greedy SAT)
● Which variable to flip?
● First attempt: let’s just be greedy
● Flip the variable that maximizes the number of 

clauses that become satisfied
○ “Hill-climbing step”

● What termination criterion makes sense?
○ Steps!

38



GSAT (Greedy SAT)
● Which variable to flip?
● First attempt: let’s just be greedy
● Flip the variable that maximizes the number of 

clauses that become satisfied
○ “Hill-climbing step”

● What termination criterion makes sense?
○ Steps!

39



GSAT (Greedy SAT)
● Which variable to flip?
● First attempt: let’s just be greedy
● Idea: flip the variable that will make the most 

unsatisfied clauses become satisfied.

40



GSAT (Greedy SAT)
● Which variable to flip?
● First attempt: let’s just be greedy
● Idea: flip the variable that will make the most 

unsatisfied clauses become satisfied.
● Issue: if flipping variable x changes 100 clauses 

from unsat → sat, but at the same time changes 
200 clauses from sat → unsat, we aren’t making 
progress in the right direction

41



GSAT (Greedy SAT)
● Which variable to flip?
● First attempt: let’s just be greedy
● Idea 2: Flip the variable that maximizes the number 

of clauses that become satisfied
○ The net change in satisfied clauses

● What termination criterion makes sense?
○ Steps!

42



GSAT (Greedy SAT)
● Which variable to flip?
● First attempt: let’s just be greedy
● Idea 2: Flip the variable that maximizes the number 

of clauses that become satisfied
○ The net change in satisfied clauses

● What termination criterion makes sense?
○ Steps!

43



GSAT (Greedy SAT)
● Slight improvement to objective:
● Makecount: number of clauses that become satisfied 

if we flip a variable
● Breakcount: number of clauses that become 

unsatisfied if we flip a variable
● Instead of maximizing makecount, maximize diffscore 

= makecount – breakcount
○ Corresponds to maximizing total number of satisfied clauses

44



GSAT Data Structures
 

45



GSAT Flip Pseudocode

46

●  



GSAT (Greedy SAT)

47

1 2 3
Value F F F

Makecount

Breakcount

Difference

We started with a “random” assignment. It just happened to be (F, F, F).



GSAT (Greedy SAT)

48

1 2 3
Value F F F

Makecount 1 2 2

Breakcount 0 0 1

Difference 1 2 1



GSAT (Greedy SAT)

49

1 2 3
Value F F F

Makecount 1 2 2

Breakcount 0 0 1

Difference 1 2 1



GSAT (Greedy SAT)

50

1 2 3
Value F T F

Makecount

Breakcount

Difference



GSAT (Greedy SAT)

51

1 2 3
Value F T F

Makecount 0 0 1

Breakcount 0 2 1

Difference 0 -2 0



GSAT (Greedy SAT)

52

1 2 3
Value F T F

Makecount 0 0 1

Breakcount 0 2 1

Difference 0 -2 0



GSAT (Greedy SAT)

53

1 2 3
Value F T T

Makecount

Breakcount

Difference



GSAT (Greedy SAT)

54

1 2 3
Value F T T

Makecount 1 0 1

Breakcount 0 1 1

Difference 1 -1 0



GSAT (Greedy SAT)

55

1 2 3
Value T T T

Makecount 0 0 0

Breakcount 1 1 1



Incompleteness

56

● Unlike DPLL, GSAT (and many local search algorithms in 
general) is incomplete
○ May not necessarily find an optimal/feasible 

solution even given unlimited time
● May start at node that can’t reach any feasible/optimal 

node or get stuck in a cycle/local optimum



A bad GSAT example

57

1 2 3
Value F F F

Makecount 0 0 1

Breakcount 0 1 2

Difference 0 -1 -1



A bad GSAT example

58

1 2 3
Value T F F

Makecount

Breakcount



A bad GSAT example

59

1 2 3
Value T F F

Makecount 0 0 1

Breakcount 0 1 2



A bad GSAT example

60

1 2 3
Value T F F

Makecount 0 0 1

Breakcount 0 1 2

Difference 0 -1 -1



Avoiding local optima
● Can use a technique we’ve seen before...
● Aggressive restarts: whenever we can’t greedily 

increase number of satisfied clauses, restart with a 
new random assignment

61



Towards a better algorithm
● Might still just repeatedly get stuck in local maxima
● How can we explore the search space more loosely 

to escape?
● Also, our greedy heuristic is slow: requires checking 

all variables at each step

62



Simplified WalkSAT
 

63



Simplified WalkSAT

64

1 2 3
F F F

🎲 Flip 3!



Simplified WalkSAT

65

1 2 3
F F T

🎲 Flip 1!



Simplified WalkSAT

66

1 2 3
T F T

🎲 Flip 3! (oops…!)



Simplified WalkSAT

67

1 2 3
T F F

🎲 Flip 2!



Simplified WalkSAT

68

1 2 3
T T T

🎲 Flip 3!



Simplified WalkSAT

69

1 2 3
T T T



Analyzing Simplified 
WalkSAT

70

0 1 2    



71

Let our “current” assignment be St and let the true assignment be S*

x1 F

x2 F

x3 F

x4 F

x5 T

St

x1 T

x2 F

x3 F

x4 T

x5 T

S*

State = 3 State = 5



72

x1 F

x2 F

x3 F

x4 F

x5 T

St

x1 T

x2 F

x3 F

x4 T

x5 T

S*

State = 3 State = 5

Case 1

Both variables in the unsatisfied clause we chose happen to differ from S*



73

x1 F

x2 F

x3 F

x4 F

x5 T

St

x1 T

x2 F

x3 F

x4 T

x5 T

S*

State = 3 State = 5

Case 1

If we randomly choose 
x1 to flip, we will move 
to state 4. 

If we randomly choose 
x4 to flip, we will move 
to state 4.

Both variables in the unsatisfied clause we chose happen to differ from S*



74

x1 F

x2 F

x3 F

x4 F

x5 T

St

x1 T

x2 F

x3 F

x4 T

x5 T

S*

State = 3 State = 5

Case 2



75

x1 F

x2 F

x3 F

x4 F

x5 T

St

x1 T

x2 F

x3 F

x4 T

x5 T

S*

State = 3 State = 5

Case 2

If we randomly choose 
x2 to flip, we will move 
to state 2. 

If we randomly choose 
x4 to flip, we will move 
to state 4.



76

Probability of “making progress”

Probability of “going backwards”



Analyzing Simplified 
WalkSAT 

77



From 2-SAT to 3-SAT
● Intuition behind simplified WalkSAT running time: 

we’re at least as likely to move forward as 
backwards, so given enough time we’ll get lucky

● Who cares about 2-SAT? Not NP-complete.
● OK, so let’s just do the same procedure for 3-SAT

78



The Problem with 3-SAT
 

79



A Smarter 3-CNF WalkSAT
 

80



WalkSAT in Practice
 

81



Choosing a Mixing 
Probability 

82



Chinese Postman Problem 
(CPP)

83

● Studied by Chinese mathematician Kwan Mei-Ko in 1960
● Given an undirected weighted graph G, what is the least 

weight traversal of the graph that visits every edge at least 
one time?

● Example: A postman delivering letters wants to know the 
optimal route that traverses every street in a given area.



Chinese Postman Problem 
(CPP)

84

10 15

8

10
12

20

13
AB

C D

E



Chinese Postman Problem 
(CPP)

85

10 15

8

10
12

13
AB

C D

E

OPT: A → B → C →E → D → C → D → B



Chinese Postman Problem 
(CPP)

86

● CPP can be solved in Polynomial Time.
○ O(n3) solution using T-joins
○ Directed CPP is also Poly-time solvable O(V2E)

● CPP can be solved in Polynomial Time.



Variations of CPP

87

10 15

8

10
12

20

13

Undirected CPP
(UCPP)

Directed CPP
(DCPP)

NY Street Sweeper



Variations of CPP

88

10

5

12

20

Windy CPP
● For some pairs of vertices, 

edges exist in both 
directions, but they have 
different weight.

● WCPP is NP-Hard



Variations of CPP

89

Mixed CPP
● Graph has a mixture of 

directed edges and 
undirected edges

● Mix of one-way and 
two-way streets

● Undirected edges only 
need to be traversed in 
one direction

● MCPP is NP-Hard



From MCPP to TSP

90

Step 1:
● Replace undirected 

edges with parallel edges



From MCPP to TSP

91

Step 1:
● Replace undirected 

edges with parallel edges
● Red numbers are indices 

for edges pointing 
between the same pair of 
vertices. 



From MCPP to TSP

92

Step 2:
● Create a vertex for each 

edge. 
● Vertices in the same 

colored box represent the 
edges that create an 
undirected edge.



From MCPP to TSP

93

Step 3:
● Determine the weight on 

the edge between all 
pairs of vertices

dbc is the shortest distance 
between vertices b and c in 
the original graph.



From MCPP to TSP

94

Step 4:

●  Choose your favorite TSP 
algorithm!


