Lecture 11.
Local Search

aaaaaaaaa

mailto:ilal@seas.upenn.edu

Logistics

Project check-in now due Monday!
Next week last Ishaan lecture

Final class on 4/24

o Project presentations (7-9 minutes, hard stop at 9)

o All details regarding project presentations and
final submission are on the master doc on the

website

Savings Heuristic

® Pick any vertex x to be the “central vertex”

e Start withn —1 subtours:x »v-oxforallveV —x

e Foreach edge (i,j) where i,j € V — x, compute its savings s(i, j)
s(@,j) =w(,x) +w(x,j) —w(i,))

® Sort edges in decreasing order of savings

® Repeat until only one tour remains:

e Let (i,)) be the next edge in sorted order

e |If edges (i,x) and (x,j) are in our subtours, and i, j are not already
in the same tour: replace (i,x) and (x,j) by (i,))

Savings Heuristic

Current cost:
25+25+30+30+20 +20 =150

Savings Heuristic

(i,j) Savingss(i,j)

(2,3) w(2,1)+w(1,3) —w(2,3)
=254+30-35=20

3,2) wi3,1)+w(,2) —w(3,2)
=30+25-35=20

2,4) w(2,1)+w(1,4)—w(24)
=25+20—10 = 35

4,2) w1 +w(,2)—w42)
=20+ 25— 10 = 35

w(3,1) +w(1,4) —w(3,4)
=30+20—-15=35

4,3) w(4,1)+w(,3) —w(4,3)
=204+30-15=35

Current cost: (3,4)
25+25+30+30+20 +20 =150

Savings Heuristic

(i,j) Savingss(i,j)

(2,3) w(2,1)+w(1,3) —w(2,3)
=25+4+30-35=20

(3,2) wi3,1)+w(,2) —w(3,2)

=30+25-35=20

(2,4) w(2,1)+w(1,4) —w(2,4)

=254+20-10=35

(4,2) w4,1)+w(l,2) —w(4,2)

=20+25-10=35

=30+20-15=35

+ + + + + -

°5Te5 1303020 0 00 @ wa D w3 -we3)

=20+30—-15=35

Current cost;

Savings Heuristic

2,3) w(2,1) +w(1,3) —w(2,3)
=254+30-35=20
3,2) wG1)+w2)-w(3,?2)
=30+4+25-35=20

2,49 w2 D+w@4)-w(24)
=25+20—-10 =35

4,2) w4,1)+w(,2) —w(4,2)
=20+425-10= 35

Current cost: #(3: 4 w@B1D+w(1,4)-w(349)

=30+20—-15=35
+ + ¥ * =
25 +25+20+15 + 30 =115 43) w41 +w(1,3) - w(4,3)

=20+30-15=35

Savings Heuristic

(i,j) Savings s(i,j)

(2,3) w(2,1) +w(1,3) —w(2,3)
=254+30-35=20

3,2 wB1)+w1,2)-w@?2)
=30 + 25 — 35 = 20

2,4 w21 +w,4)-w4)
=25+20—10 = 35

-|4, 2) w41 +w(l,2) —w4,2)
=204+25-10=35

(3,4) w(3,1) +w(1,4) —w(3,4)

Current cost:
=30+20-15= 35

25+25+20 +15+ 30 =115 4,3) w41 +w(1,3)-w3)

=20+30-15=35

Savings Heuristic

2,3) w@1)+w(d,3) -w2,3)
=25+ 30— 35 =20

=30+25-35=20

2,4 w21 +w(1,4)—w4)
=25+20— 10 = 35
4,2) w41 +w(1,2)—w42)
=20+ 25— 10 = 35

(3,4) w(3,1)+w(1,4) —w(3,4)
=304+20—-15=35

4,3) w41 +w(d,3)—w43)
=20+30—15=135

Current cost:
25 +25+20 +15 + 30 = 115

Savings Heuristic

Current cost:
25+10+ 15+ 30 =80

(i,j) Savingss(i,j)

2,3 w21 +w3)-w3)
=254+30-35=20
(3.2) w(3,1)+w(1,2) —w(3,2)
=30+4+25-35=20
2,4) w(2,1)+w(1,4)—w(24)
=25+4+20-10=35
4,2) w4,1)+w(,2) —w(4,2)
=20+4+25-10=35
(3,4) w(3,1) +w(1,4) —w(3,4)
=30+20-15=35
(4,3) w(4,1) +w(1,3) —w(4,3)
=20+30—-15=35

PERCENT EXCESS OVER THE HELD-KARP BOUND

35

25

20

15

10

10,000-City Random Uniform Euclidean Instances

| spacefil

worse solution

Strip

NI

NN worse runtime

CHCI :

Greedy
3]
Savings CCA
AppCliristo
Christo
GENI-10
2opt
3opt
LK
T
MUK oIk Helsgaun -
I 1 I 1 1 1
0.1 1.0 10.0 100.0 1,000.0 10,000.0

NORMALIZED RUNNING TIME IN SECONDS

https./pubsonline.informs.org/doi/abs/10.1287/ij0c.4.4.387

NI

NN

CHCI

Greedy

Fi

Savings
AppCliristo

http./www.atgc-montpellierfr/permutmatrix/manual/Seriatio

NnPPLhtm

https://pubsonline.informs.org/doi/abs/10.1287/ijoc.4.4.387
http://www.atgc-montpellier.fr/permutmatrix/manual/SeriationPPI.htm
http://www.atgc-montpellier.fr/permutmatrix/manual/SeriationPPI.htm

Vehicle Routing Problem

Actually, the Savings heuristic was created to solve a
generalization of the TSP

The Vehicle Routing Problem (VRP) also takes place in a
weighted, complete graph

Instead of one salesman, we have a fleet of vehicles
which are all parked at a central vertex (the depot)

May or may not be a limit on the number of vehicles

Goal: find routes starting and ending at the depot for each
vehicle with minimum total weight so that each vertex is
visited once by some vehicle

Constrained VRP

In real life: why use a fleet of vehicles when you could
have one vehicle that travels all the routes?

There may be additional constraints for vehicles, e.g.
Maximum distance a vehicle can travel

Carrying capacity of a vehicle, where each node has
some volume to be delivered

Savings Heuristic for VRP

Let x denote the depot

Start withn — 1 subtours: x » v > xforallveV —x

For each edge (i,j), where i,j € V — x, compute its savings s(i, j)
s(@j) =w(i,x) +w(x,j) —w(ij)

Sort edges in decreasing order of savings

Repeat until eaty=eme tour remains or we reach negative savings:

Let (i,) be the next edge in sorted order

If edges (i, x) and (x, j) are in our subtours, and i, j are not already
in the same tour: replace (i, x) and (x,j) by (i, j)..
.unless it would violate our constraints

Solving TSP with OR-Tools

OR-Tools comes with a routing solver that can solve the TSP and
VRP with much more complex constraints!

Pickups and drop-offs, time windows, penalties..

The guide is pretty good:
https://developers.google.com/optimization/routing

Comes with many heuristics including NN, Savings, etc...

By default, solver automatically chooses a heuristic to use based on
the problem at hand
Note: the routing solver is optimized for getting a "good enough’
solution to constrained problems, not exact solving huge TSPs

https://developers.google.com/optimization/routing

Recap: Heuristics

|_ast week: construction heuristics

Start with nothing and build up a partial solution
Nearest neighbor, nearest/farthest insertion, savings

This week: improvement heuristics
Start with any solution and try to find a better one
In particular: local search

Local Search

Out of all possible solutions, consider some of them
as "“neighbors” in (undirected) neighborhood graph

Typically, two solutions are neighbors if we can
transform one into the other by a simple operation

Start with any solution node, and attempt to reach a
better one by exploring its neighborhood

Limit which moves are acceptable to make the
graph directed

In other words, start with any solution, and
continuously tweak it to a better solution.

Terminating Local Search

When should we give up exploring?
Time bound: give up if it's taking too long

Step bound: give up after some number of steps
Problem-specific knowledge will help here

Improvement bound: give up if we have not
improved our solution (enough)

Can combine with time/step bounds

Backto TSP

Local search is natural for TSP
Start with any tour, and try to improve it into a
cheaper tour

What's a reasonable "neighbor relation” on all tours?

What's a simple operation to transform one tour into another
tour?

2-Adjacency and
2-ersail:yl m%)lulrgy and T’ are 2-adjacent if we can

transform one into the other by deleting two edges
and adding two edges

We say TSP tour T is 2-optimal if there is no
cheaper tour adjacentto T

The 2-opt Swap

Idea: "uncross’ the tour where it crosses over itself

swap(T,i,j) =T[1:i—1]+ T[i:j]R + T[j + 1 : n]
swap([4,C,B,D],2,3) = [A] + [C,B]? + [D] = [A,B, C,D]

The 2-opt Swap

swap([A, C, B, D, E], 2, 4) = [A] + rev([C, B, D]), [E] = [A, D, B, C, E]

R

E D C

The 2-opt Heuristic

attempt to improve tour T
2-opt(T) :
until cost(T) does not decrease:
for each pair of indices i<]j:
if cost(swap(T,i,j)) < cost(T):
let T = swap(T,i,j)

This heuristic does not guarantee you will find the optimal solution.

The 2-opt Heuristic

Current tour:

A D C B

Current cost:

20+10+ 35+ 30 =95

The 2-opt Heuristic

Current tour:

A D, C B

Current cost:

20+10+35+30=05

cost(swap(T, 1, 2)) = cost([D, A4, C, B)]):
20+30+35+5=90

The 2-opt Heuristic

Current tour:

DA C B

Current cost:

20+30+35+5=90

The 2-opt Heuristic

Current tour:

D, A C B

Current cost:

20+30+35+5=900

cost(swap(T, 1, 2)) = cost([A4, D, C, B]):
20+10+35+30 =95

The 2-opt Heuristic

Current tour:

D, A C B

Current cost:

20+30+35+5=900

cost(swap(T, 1, 3)) = cost([C, A, D, B)]):
30+20+5+35=90

The 2-opt Heuristic

Current tour:

D, A C B

Current cost:

20+30+35+5=900

cost(swap(T, 1, 4)) = cost([B,C, A, D]):
35+30+20+5=90

The 2-opt Heuristic

Current tour:

D, A C B

Current cost:

20+30+35+5=900

cost(swap(T, 2, 3)) = cost([D, C, A, B)]):
15+30+25+5=7/5

The 2-opt Heuristic

Current tour:

D, C A B

Current cost:

15+30+25+5=7/5

Etc..

Generalizing 2-opt

Can easily generalize 2-opt to 3-opt, 4-opt, k-opt..

Lin-Kernighan heuristic: start with k-opt for k = 2,
then dynamically increase/decrease k over time
based on several criteria

One of the most effective TSP heuristics!

PERCENT EXCESS OVER THE HELD-KARP BOUND

35

25

20

15

10

10,000-City Random Uniform Euclidean Instances

Spacefill

Strip

NI

NN

CHCI

Greedy

Fl

Savings
AppCl.risto
Christo

2opt
3opt

MLLK

worse solution

worse runtime

—

CCA

GENI-10

Tabu
CLK Helsgaun

2opt

3opt

T T T
0.1 1.0 10.0

1 1 1
100.0 1,000.0 10,000.0

NORMALIZED RUNNING TIME IN SECONDS

Are you sure 2-OPT doesn't always
eventually return optimal?

YES

https://cs.stackexchange.com/questions/73784/why-doesnt-2-opt-return-an-optimal-solution

Local Search for SAT

Even though SAT isnt an optimization problem, we
can still try to solve it with local search

A “solution” will be any truth assignment, even if it
isnt satisfying

What is a reasonable "heighbor relation” on all
assignments?

Neighborhood of
Aﬁﬁigﬂ mgmation to transform one

assignment into another?

Neighborhood of
As«ﬁigﬂ mgmation to transform one

assignment into another?

Flip the truth value
of a single variable

GSAT (Greedy SAT)

Which variable to flip?

GSAT (Greedy SAT)

Which variable to flip?
First attempt: let's just be greedy

GSAT (Greedy SAT)

Which variable to flip?
First attempt: let's just be greedy

ldea: flip the variable that will make the most
unsatisfied clauses become satisfied.

GSAT (Greedy SAT)

Which variable to flip?
First attempt: let's just be greedy

ldea: flip the variable that will make the most
unsatisfied clauses become satisfied.

Issue: if flipping variable x changes 100 clauses
from unsat — sat, but at the same time changes
200 clauses from sat — unsat, we aren't making
progress in the right direction

GSAT (Greedy SAT)

Which variable to flip?
First attempt: let's just be greedy

Idea 2: Flip the variable that maximizes the number
of clauses that become satisfied

The net change in satisfied clauses

GSAT (Greedy SAT)

Which variable to flip?
First attempt: let's just be greedy

Idea 2: Flip the variable that maximizes the number
of clauses that become satisfied

The net change in satisfied clauses

What termination criterion makes sense?
Steps!

GSAT (Greedy SAT)

Slight improvement to objective:

Makecount: number of clauses that become satisfied
if we flip a variable

Breakcount: number of clauses that become
unsatisfied if we flip a variable

Instead of maximizing makecount, maximize diffscore
= makecount - breakcount

Corresponds to maximizing total number of satisfied clauses

GSAT Data Structures

How do we efficiently calculate which flip is best?
Unsat list: all currently unsatisfied clauses
Occurrence lists: clauses containing each literal

Makecount and breakcount lists: for each variable,
store the number of clauses that become

satisfied/unsatisfied if we flip

When we flip x, update counts for all other variables in
clauses containing x

GSAT Flip Pseudocode «®-

#o for simplicity assume v = T and we set v = F afterwards
pre_flip(v):
for clause C containing v:
if n true lits[C] = 1: # case 1 -> 0
add C to unsat list
for literal | in C: make count[var(l)] += 1
break count[v] -=1
else if n true lits[(C] = 2: # case 2 -> 1
let | = the other true literal in C
break count[var(l)] += 1
for clause C containing v:

false -> true case is essentially symmetric

GSAT (Greedy SAT) ®-

5 I
(
(

_ Makecount
1vi3)

Breakcount

I \/ I \/ I) Difference

We started with a “‘random” assignment. It just happened to be (F, F, F).

GSAT (Greedy SAT) ®-

Makecount

(
(I \/ g) Breakcount
(I \/ I \/ I) Difference

[(@) [T
V) (@) N I
[= N T

GSAT (Greedy SAT) O

& 1z 3

(I) Value
%)
(

Breakcount

I \/ I \/ I) Difference

GSAT (Greedy SAT) O

(
(I \/ g) Makecount
(

Breakcount

I \/) \/ I) Difference

GSAT (Greedy SAT) ®-

Makecount

(
(I \/ 3) Breakcount
(I vV 2V I) Difference

®) ©) @) I
| M OO H
O r wr| M

GSAT (Greedy SAT) ®-

Makecount

(
(I \/ 3) Breakcount
(I vV 2V I) Difference

©)) @) M

(3) Value F
Makecount

(I \/ I) Breakcount

(I \/) \/ 3) Difference

Value

Makecount

Breakcount

Difference

GSAT (Greedy SAT) ®-
2 —s

3 - LTI

avy NN
(1v2V3)

Incompleteness

Unlike DPLL, GSAT (and many local search algorithms in
general) is incomplete

May not necessarily find an optimal/feasible
solution even given unlimited time

May start at node that can't reach any feasible/optimal
node or get stuck in a cycle/local optimum

A bad GSAT example «®-

(. \/ 3) Value F

Y Makecount 1
<. \/ 3> Breakcount 2
D) -1

(2 \/ n Difference

A bad GSAT example «®-
(.) .

(1 \% §> Value - = e
= Makecount
<.\/ 3 Breakcount

Eve

A bad GSAT example «®-

(]. \/ 3) Value T F F
Y Makecount 0 0 1
<. \/ 3 Breakcount 0 1 2

Eve

A bad GSAT example «?*
3) 12 3
(]. \/ §> Value
(.\/ g Makecount

Breakcount

2 \/ .) Difference

Avoiding local optima

Can use a technique we've seen before...

Aggressive restarts: whenever we cant greedily
increase number of satisfied clauses, restart with a
new random assignment

Towards a better algorithm

Might still just repeatedly get stuck in local maxima

How can we explore the search space more loosely
to escape?

Also, our greedy heuristic is slow: requires checking
all variables at each step

Simplified WalkSAT

For now, let's just consider 2-SAT

Simplified WalkSAT algorithm:
Start with any assignment of ¢
Arbitrarily pick a clause C that is not satisfied
Randomly flip the value of one of C’s literals

"Random walk” might never finish!

~ Simplified WalkSAT b 2

(BV2) rups
TVv3)
2Vv3)
2VvB)

L A

~ Simplified WalkSAT b 2

(3VvE2)
(.\/m *# Flip 1!
2Vv3)

(2Vv3)

L A L

IR RN S o P
Simplified WalkSAT @
(3VE2) S |
(1Vv3)
G V m +# Flip 3! (oops..})
(2V3)

o .

Simplified WalkSAT «®-

BV2) #rip= I |
(1Vv3)
2Vv3)
2V

o o
Simplified WalkSAT @
(3V2) ENCE '
(1v3)
2Vv3)

. \V4 . . Flip 3!

o .
Simplified WalkSAT «®-
(3 V2) |
- EAREES
(2VvB)
@v3)

Analyzing Simplified
\V'a\l IL.CAT
For now, let's just consider 2-SAT
Simplified WalkSAT is mathematically “nice”
Suppose ¢ has a satisfying assignment a

State of WalkSAT: how many variables in the
current assignment agree with a?

S S’

..

S S’

Both variables in the unsatisfied clause we chose happen to differ from S
S*

X, T If we randomly choose :

X, F x, to flip, we willmove
to state 4. '

X, F :

X, T If we randomly choose

X, T X, to flip, we willmove
to state 4.

State =5

...

If we randomly choose
X, to flip, we will move
to state 2. '

If we randomly choose
x, to flip, we will move
to state 4. |

Probability of "'making progress’

Pristate;;1 =1+ 1| state; =1 > 1/2
Probability of "going backwards’
Pristate;;1 =1 — 1| state; =1 < 1/2

Analyzing Simplified
WalkSAT
[V iy

unsatisfied clause

» At least Y2 probability of advancing to next state
If we reach state n, done

» In expectation, satisfying assignment will be
found in 0(n?) steps

From 2-SAT to 3-SAT

Intuition behind simplified WalkSAT running time:
we're at least as likely to move forward as
backwards, so given enough time we'll get lucky

Who cares about 2-SAT? Not NP-complete.
OK, so let’s just do the same procedure for 3-SAT

The Problem with 3-SAT

Probability of moving to next state is at least 1/3

Probability of moving backwards to previous
state can be as bad as 2/3!

Intuition: we're "pulled” backwards, and the more
steps we take the farther we are from our goal

Expected runtime: 0(2")

A Smarter 3-CNF WalkSAT

Idea: since we move farther “backwards” the
longer we run, we should not run for long

Can utilize aggressive restarts
If we don't find a satisfying assignment in 3n steps, restart

Expected runtime: 0 ((g)n>

Assuming we start from a random assignment

WalkSAT in Practice

In practice, rather than just rely on randomness,
we'll mix random walks and greediness

» WalkSAT algorithm:
Start with any assignment of ¢
Arbitrarily pick a clause C that is not satisfied
With fixed probability p:
Randomly flip the value of one of C’s literals
Else with probability 1 — p:

Flip literal in € to maximize number of clauses that
become satisfied

Choosing a Mixing
P»r@?at?obc!wlé!)tsymr the mixing probability p?

Prof. Charles Elkan (UCSD):

For random hard 3SAT problems (those with the ratio of clauses to
variables around 4.25) p = 0.5 works well. For 3SAT formulas with
more structure, as generated in many applications, slightly more
greediness, i.e. p < 0.5, is often better.

Best to determine experimentally for your problem

For industrial (hon-random) and unsatisfiable SAT
instances, WalkSAT is probably much worse than CDCL

Chinese Postman Problem
(CPP)

Studied by Chinese mathematician Kwan Mei-Ko in 1960

Given an undirected weighted graph G, what is the least
weight traversal of the graph that visits every edge at least
one time?

Example: A postman delivering letters wants to know the
optimal route that traverses every street in a given area.

Chinese Postman Problem
(CPP)

10 15

12

13

Chinese Postman Problem
(CPP)

10 15

12

®) ®

13
OP TA—-B—-C—-E—-D—->-C—->D—B

Chinese Postman Problem
(CPP)

CPP can be solved in Polynomial Time.
O(n3) solution using T-joins
Directed CPP is also Poly-time solvable O(VZE)

CPP can be solved in Polynomial Time.

Variations of CPP

10 20

@, O

13

Undirected CPP
(UCPP)

) 4
Q\/D

Directed CPP
(DCPP)
NY Street Sweeper

Variations of CPP

Windy CPP
e [or some pairs of vertices,
edges exist in both
directions, but they have
different weight.
o \WCPPis NP-Hard

Variations of CPP

Mixed CPP

e (Graph has a mixture of
directed edges and
undirected edges

e Mix of one-way and
two-way streets

e Undirected edges only
need to be traversed in
one direction

e MCPP is NP-Hard

From MCPP to TSP

Step 1.
e Replace undirected
edges with parallel edges

Fig. 1. The original MCPP problem in multigraph

From MCPP to TSP

Step 1.

Fig. 2. The results of numbering each parallel arc

Replace undirected
edges with parallel edges
Red numbers are indices
for edges pointing
between the same pair of
vertices.

From MCPP to TSP

Step 2;
e Create a vertex for each
edge.

e \erticesin the same
colored box represent the
edges that create an
undirected edge.

Fig. 3. The vertices and clusters of transformed problems

From MCPP to TSP

Step 3

e Determine the weight on
the edge between all
pairs of vertices

c(vsg,)-(1(3+-c

olbC IS the shortest distance
between vertices b and ¢ in
the original graph.

Fig. 3. The vertices and clusters of transformed problems C (’I] % 1 , ’U 3 1) d 1 3 _I_ 03 1

=(1+2)+4

From MCPP to TSP

Qove

Fig. 3. The vertices and clusters of transformed problems

1 2 3 4 5 6 7 8

vi, | vls | vis | vy | V3 | V5 | vi | Vi,

I vi, - 6 7 1 2 3 6 5
2 vl 5 - 10 4 S5 6 4 3
3| wix]| 5 9 - 4 5 6 4 3
4 | vi, 1 5 6 - 3 4 7 6
51| 5 9 10 4 - 6 4 3
6 | v | 5 9 10 4 5 - 4 3
7 (v | 1 5 6 2 3 4) 6
o vi, | 2 6 7 1 2 3 6 -

Step 4.

Choose your favorite TSP
algorithm!

