
Lecture 10:
TSP Techniques
Ishaan Lal ilal@seas.upenn.edu

CIS 1921

mailto:ilal@seas.upenn.edu

Traveling Salesman Problem
● Problem: in weighted complete

graph, find a tour of minimum total
cost that visits every vertex exactly
once and returns to starting vertex
○ Graph can be directed or undirected

● Applications in routing, logistics, etc.
● NP-complete!

2

Preliminary Notation
●

3

Example

4

● 4

2 3

1

35

20 15

25 30

10

Attempt: Solving TSP with
CP?

5

An issue
● This CP formulation allows “subtours” rather than

forcing one contiguous tour!

● How to fix this?

6

Disallowing subtours

7

Traveling Salesman Problem
● Observation: TSP is an approximation-friendly problem

○ In practice, “good enough” usually is good enough!

● Goal: design efficient heuristics that give an empirically
cheap tour (possibly not quite cheapest)

● Today: constructive heuristics
○ Start from nothing and iteratively build up partial solution

8

Nearest-Neighbor (NN)

9

Nearest-Neighbor (NN)

10

4

2 3

1

35

20 15

25 30

10

● Current tour:

1

● Current cost:

0

Nearest-Neighbor (NN)

11

4

2 3

1

35

20 15

25 30

10

● Current tour:

1, 4

● Current cost:

20 + 20 = 40

Nearest-Neighbor (NN)

12

4

2 3

1

35

20 15

25 30

10

● Current tour:

1, 4, 2

● Current cost:

20 + 10 + 25 = 55

Nearest-Neighbor (NN)

13

4

2 3

1

35

20 15

25 30

10

● Current tour:

1, 4, 2, 3

● Current cost:

20 + 10 + 35 + 30 = 95

Nearest-Neighbor (NN)

14

● NN yields a path that is on average 25% longer than the true
shortest path

● NN does not guarantee that the solution it comes up with will
be good – there are instances of TSP where NN would return
the worst path

● Solution changes depending on
starting point

From NN to NI

15

● NN commits early – this might leave us with the situation that
later cities are far apart.

4

2 3

1

35

20 15

25 30

10

● Current tour:

1, 4, 2

● Current cost:

20 + 10 + 25 = 55

● IDEA: “Optimally” insert the nearest city.

16

Nearest-Insertion (NI)

17

4

2 3

1

35

20 15

25 30

10

● Current tour:

1

● Current cost:

0

Nearest-Insertion (NI)

18

4

2 3

1

35

20 15

25 30

10

● Current tour:

1

● Current cost:

0

● Next vertex: 4
○ Only one place to insert (up to rotation)

Nearest-Insertion (NI)

19

4

2 3

1

35

20 15

25 30

10

● Current tour:

1, 4

● Current cost:

20 + 20 = 40

Nearest-Insertion (NI)

20

4

2 3

1

35

20 15

25 30

10

● Current tour:

1, 4

● Current cost:

20 + 20 = 40

● Next vertex: 2
After 1: w(1, 2) + w(2, 4) – w(1,4) = 25 + 10 – 20 = 15
After 4: w(4, 2) + w(2, 1) – w(1,4) = 10 + 25 – 20 = 15

Nearest-Insertion (NI)

21

4

2 3

1

35

20 15

25 30

10

● Current tour:

1, 2, 4

● Current cost:

25 + 10 + 20 = 55

Nearest-Insertion (NI)

22

4

2 3

1

35

20 15

25 30

10

● Current tour:

1, 2, 4

● Current cost:

25 + 10 + 20 = 55

● Next vertex: 3
After 1: w(1, 3) + w(3, 2) – w(1, 2) = 30 + 35 – 25 = 40
After 2: w(2, 3) + w(3, 4) – w(2, 4) = 35 + 15 – 10 = 40
After 4: w(4, 3) + w(3, 1) – w(4, 1) = 15 + 30 – 20 = 25

Nearest-Insertion (NI)

23

4

2 3

1

35

20 15

25 30

10

● Current tour:

1, 2, 4, 3

● Current cost:

25 + 10 + 15 + 30 = 80

Nearest-Insertion (NI)

http://www.youtube.com/watch?v=tUAdRcT3ejY

26

● Intuition: Start with the “difficult” vertices first to avoid getting
into bad situations down the line.

27

Farthest-Insertion (FI)

(Rosenkrantz, Stearns, Lewis II, 1977)

Farthest-Insertion (FI)

28

4

2 3

1

35

20 15

25 30

10

● Current tour:

1

● Current cost:

0

Farthest-Insertion (FI)

29

4

2 3

1

35

20 15

25 30

10

● Current tour:

1

● Current cost:

0

● Next vertex: 3
○ Only one place to insert (up to rotation)

Farthest-Insertion (FI)

30

4

2 3

1

35

20 15

25 30

10

● Current tour:

1, 3

● Current cost:

30 + 30 = 60

Farthest-Insertion (FI)

31

4

2 3

1

35

20 15

25 30

10

● Current tour:

1, 3

● Current cost:

30 + 30 = 60

● Next vertex: 2
After 1: w(1, 2) + w(2, 3) – w(1, 3) = 25 + 35 – 30 = 30
After 3: w(3, 2) + w(2, 1) – w(1, 3) = 35 + 25 – 30 = 30

Farthest-Insertion (FI)

32

4

2 3

1

35

20 15

25 30

10

● Current tour:

1, 2, 3

● Current cost:

25 + 35 + 30 = 90

Farthest-Insertion (FI)

33

4

2 3

1

35

20 15

25 30

10

● Current tour:

1, 2, 3

● Current cost:

25 + 35 + 30 = 90

● Next vertex: 4
After 1: w(1, 4) + w(4, 2) – w(1, 2) = 20 + 10 – 25 = 5
After 2: w(2, 4) + w(4, 2) – w(2, 3) = 10 + 15 – 35 = -10
After 3: w(3, 4) + w(4, 1) – w(3, 1) = 15 + 20 – 30 = 5

Farthest-Insertion (FI)

34

4

2 3

1

35

20 15

25 30

10

● Current tour:

1, 2, 4, 3

● Current cost:

25 + 10 + 15 + 30 = 80

Farthest-Insertion (NI)

Insertion Heuristics
● Aims to be less naively greedy than NN

○ Unlike NN, can modify partial tour

● Somewhat more expensive than NN heuristic
● FI works pretty well in practice...
● ...but NI not so much.

36

Farthest-Insertion (NI)

Savings Heuristic
●

38

46

worse solution

worse runtime

https://pubsonline.informs.org/doi/abs/10.1287/ijoc.4.4.387
http://www.atgc-montpellier.fr/permutmatrix/manual/Seriatio
nPPI.htm

https://pubsonline.informs.org/doi/abs/10.1287/ijoc.4.4.387
http://www.atgc-montpellier.fr/permutmatrix/manual/SeriationPPI.htm
http://www.atgc-montpellier.fr/permutmatrix/manual/SeriationPPI.htm

Vehicle Routing Problem
● Actually, the Savings heuristic was created to solve a

generalization of the TSP:
● The Vehicle Routing Problem (VRP) also takes place in a

weighted, complete graph
● Instead of one salesman, we have a fleet of vehicles

which are all parked at a central vertex (the depot)
○ May or may not be a limit on the number of vehicles

● Goal: find routes starting and ending at the depot for each
vehicle with minimum total weight so that each vertex is
visited once by some vehicle

47

Constrained VRP
● In real life: why use a fleet of vehicles when you could

have one vehicle that travels all the routes?
● There may be additional constraints for vehicles, e.g.:

○ Maximum distance a vehicle can travel
○ Carrying capacity of a vehicle, where each node has

some volume to be delivered

48

Solving TSP with OR-Tools
● OR-Tools comes with a routing solver that can solve the TSP and

VRP with much more complex constraints!
○ Pickups and drop-offs, time windows, penalties...

● The guide is pretty good:
https://developers.google.com/optimization/routing

● Comes with many heuristics including NN, Savings, etc...
○ By default, solver automatically chooses a heuristic to use based on

the problem at hand
● Note: the routing solver is optimized for getting a “good enough”

solution to constrained problems, not exact solving huge TSPs

50

https://developers.google.com/optimization/routing

Scaling and Shifting

51

The OR-Tools TSP Solver doesn’t
always produce an optimal
solution.

How well does it do in practice ?

Let’s test it on instances from the National TSP Collection, a set of
real-world instances ranging in size from 29 to 71,000+ nodes.

52

Benchmarking the TSP
Solver

53

Country # Cities Output Cost Optimal Cost Percent Error *Runtime (s)

W. Sahara 29 27749 27603 0.53% 0.0320

Djibouti 38 7078 6656 6.3% 0.0657

Qatar 194 10064 9352 7.6% 2.61

Uruguay 734 83476 79114 5.5% 37.9

Zimbabwe 929 101100 95345 6.0% 91.4

Oman 1979 92250 86891 6.2% 668

*Running on a Dell XPS laptop with 16GB of RAM, in a Jupyter notebook.

