
CIS 1921: Solving
Hard Problems
in Practice

👋 Welcome!

Teaching Staff

2

ISHAAN LAL
Instructor
ilal @ seas

CINDY YANG
Teaching Assistant

cindyy @ seas

THOMAS NGULUBE
Teaching Assistant
tngulube @ seas

Data collection...

seas.upenn.edu/~cis192
1
COURSE WEBSITE

Goals for the course
● Encounter vital but provably

hard problems
● Discover how industry experts tackle problems in

practice
● Experiment with industrial tools using modern

techniques
● Apply these tools to your own hard problems

5

Goals for the course
● Encounter vital but provably hard problems

● Discover how industry experts
tackle problems in practice

● Experiment with industrial tools using modern
techniques

● Apply these tools to your own hard problems

6

Goals for the course
● Encounter vital but provably hard problems
● Discover how industry experts tackle problems in

practice

● Experiment with industrial tools
using modern techniques

● Apply these tools to your own hard problems

7

Goals for the course
● Encounter vital but provably hard problems
● Discover how industry experts tackle problems in

practice
● Experiment with industrial tools using modern

techniques

● Apply these tools to your own
hard problems

8

Course Logistics
● Homework: 5 programming assignments

○ Late policy: 48 hours cumulative late submission.
○ HW0 (finger exercises) due Monday, January 27th, 11:59PM.

● Final Project: solve your own hard problem, flexible
● Exams: no
● Office Hours: schedule (TBD) on seas.upenn.edu/~cis1921
● Gradescope: 8KPRG5
● Canvas / Ed: Working on it...
● Prerequisites: CIS1210 (strict), CIS2620 (nice to have, not necessary)

9

Grading

10

● Homework: 44%
● Final Project: 38%
● Quizzes: 10%
● Attendance: 8%

● Final grades:
don’t worry too much about it.

Academic Integrity
● Work on assignments individually (except final project)

○ Discussion encouraged, but work should be yours
● OK: high-level discussions

○ “Can you help me understand the DPLL algorithm?”

● OK: low-level discussions
○ “How do I time my program in OR-Tools?”

● Be careful: mid-level discussions
○ Not OK: “How exactly do I write this constraint?”

11

Health Logistics
● If you have a reasonable

suspicion that you have
Covid or sickness, don’t
come
○ Email me before class and

we’ll work something out

12

Theory? Practice?
● Interspersed theory & practice

○ “Practice”: applying techniques
○ “Theory”: how techniques work
○ Proofs rarely

● Lots of problem solving!
● Some “live coding demos”

13

This graphic may be outdated...

Problem

14

Problem

15

● Draw lines along the edges of
the squares to form a single
loop without crosses or
branches

● The number indicates how
many lines surround it

Solution

16

https://shorturl.at/6P4
oW

lowercase letter “oh”

Timeline of the Semester

18

Lec 1-2

SAT, Graph
Coloring, Matchings

Lec 3-4

Algorithms for SAT
Lec 5-6

LP, ILP, MP
Lec 8-9

Constraint
Programming

Lec 10-11

FDP, TSP, VRP Lec
12-13

Special Topics, Heuristics,
Genetic Algorithms

Timeline of Homeworks

19

HW 0 HW 2

HW 3 ProjectHW 1

HW 4

Class Schedule
● 7:00 - 7:10 – Quiz or TA-led review
● 7:10 - 8:30 – Lecture

○ maybe end sooner...

Lecture 1:
Hard Problems

CIS 1921

22

What makes a problem

hard?

CIS 262 in 5 minutes
● DECISION problem: some question that can be

answered YES/NO for any input

23

● OPTIMIZATION problem: try to find the “best” out of
many feasible solutions

CIS 262 in 5 minutes
● Easy problem: we can solve it

quickly for any input
○ Quickly: as input size grows, solving time

grows at most polynomially

● Difficult problem: can’t solve
it quickly for every input
○ Solving time might grow exponentially in

general

24

CIS 262 in 5 minutes
● NP-complete: tons of critical

decision problems that turn
out to be equivalent

25

CIS 262 in 5 minutes

26

CIS 262 in 5 minutes
● Probably difficult: nobody has able to figure out how

to solve these problems quickly in 50+ years

27

Our final definition of hard

28

29

We’ll look at NP-complete problems
(both decision and optimization
varieties) in this course.

● Decision problems often ask “does there exist some solution?”
● In practice, we don’t just want to determine if a solution exists;

want to find a solution as well.

Does exponential runtime
matter?
● Moore, 1965: number of transistors per

chip doubles every two years
● Why bother with solvers? Just wait for

faster computers

30

● Issue 1: if problems take O(2n) time,
then even if computer speed
doubles, we can only increase n by 1

● Issue 2: 55 years later, Moore’s law is
slowing down

How to solve it, then?

A hopeless challenge?

31

No! Worst case is pessimistic!

32

Heuristic
Algorithm
s

The Universal Solver
● 1956-74: early efforts towards general automated reasoning

○ 1956: Samuel’s checkers program demonstrated on TV
○ 1959: Simon, Shaw & Newell’s General Problem Solver
○ 1964: Bobrow’s natural-language word problem solver

● 1971: introduction of NP-completeness
○ General idea: can solve one problem extremely well, and

reduce all other problems to that problem

33

Classic hard problem: SAT

34

● Satisfiability Problem: Given a formula of boolean
variables, does there exist a truth assignment that makes
the entire formula evaluate to True?
○ Is this a decision problem or an optimization problem?
○ Many problems can be encoded as SAT instances
○ Assignment: a choice of truth values for each variable.

● Let’s see some examples on the board…
● Cook’s Theorem (1971): SAT is NP-complete

○ First NP-complete problem!

SAT

Modern SAT solvers
● SAT solvers: black-boxes to quickly solve huge

instances of SAT
● 1962: Davis, Putnam, and Loveland formulate

precursor to most modern SAT solvers
● GRASP (UMich 1996) and Chaff (Princeton 2001):

first practical, efficient SAT solvers

36

Timeline of SAT solvers

37

● Today: can solve instances with millions of variables
○ 1m vars: search space of assignments is 21000000 ≈ 9.9 ⨉ 10301029

○ Age of universe ≈ 4.3 ⨉ 1026 nanoseconds

● This chart refers to typical SAT instances found in industry applications

1962

DPLL (~10 vars)

1986

BDDs (~100 vars)

1992

GSAT (~300 vars)

1996

GRASP (~1k vars)

2001

Chaff (~10k vars)

2005

MiniSat (~100k vars)

SAT terminology

38

● Let’s see an example...

Conjunctive Normal Form

39

CNF-SAT: a loss of
generality?

40

DeMorgan’s & Distributive
Laws

41

Next week: learn how to
use SAT solvers
ourselves!

42

Our language of choice...
Python!
● Pros:

○ Easy to learn and use
○ Concise
○ Don’t need to spend time worrying

about low-level details
● Cons:

○ Slow (in practice, C++ is used to
develop solver systems)

43

But I don’t know Python...
Don’t worry!
● HW0: Finger Exercises will bring you up

to speed
● Very easy syntax, low learning curve
● Don’t need to be a Python expert to

succeed in 1921
● If you are comfortable with any OOP

language (e.g. Java) you’ll be fine

44

