CIS192 Python Programming
Concurrency and Performance

Eric Kutschera
University of Pennsylvania

April 3, 2015
Outline

1. Performance
 - Measurement
 - Compilation

2. Concurrency
 - Multi-Thread
 - Multi-Process
 - Worker Pools
The `timeit` module times execution of bits of code

- It avoids some common traps for timing code
 - Setup code is separated out and not timed
 - Garbage collecting is turned off
 - Repeated trials suppress measurement noise

Use `timeit` when you want to see which of 2 options is faster
Using Timeit

```python
import timeit

t = timeit.Timer(stmt=stmt_code, setup=setup_code)
t.timeit(number=num_trials)
```

- **setup** is executed once before any **stmts**
- **stmt** is executed **num_trials** times
- Returns time in seconds taken to execute
- The time does not include executing **setup**
- Copying the code to execute into a multi-line string could be useful
- A better idea is to import it:
  ```python
  setup = 'from __main__ import func_to_time'
  ```
profile and cProfile are built-in profilers
Profiling a program gives data on a particular execution
Shows which functions the program spends time in
Useful if a program is running slower than you expect/want
Profiling can identify bottleneck functions
Then you can target optimizations to those functions
Since there is overhead to track which functions are being called:
 - Profiling can take longer than regular execution
 - The output should not be used to benchmark (use timeit)
profile and cProfile
 - have the same interface
 - cProfile is a faster C extension
 - unlike cPickle you need to explicitly import the C version

To profile a function call: `cProfile.run('function()')`

Profile the whole program with

```python
if __name__ == '__main__':
    cProfile.run('main()')
```
Nice printing of output with `pstats`

```python
if __name__ == '__main__':
    cProfile.run('main()', 'restats')
p = pstats.Stats('restats')
p.sort_stats('cumulative').print_stats()
```

- Save the output to a file `'restats'`
- Parse that file with `pstats`
- Sort by a column of the output
Outline

1. Performance
 - Measurement
 - Compilation

2. Concurrency
 - Multi-Thread
 - Multi-Process
 - Worker Pools
The CPython interpreter:

- Generates **byte code** (.pyc)
- Executes that byte code

When a Python module is imported byte code is saved

Byte code is put in the `__pycache__` directory

By default a `.pyc` byte code file is used

Running `python -O` uses an “optimized” `.pyo` file

- Not much optimization actually happens
- Ignores `assert` statements

Benefits of pre-compilation

- Skip the compilation step when invoking the `.py` file
- If imported multiple times, it will only get compiled once

Compiling to byte code will **not** make your program faster
Cython is a optimizing static compiler for Python

It is a superset of Python:
- It *should* run all pure Python code correctly
- Directly call C functions
- Add C type declarations to Python variables

Compiles through C instead of to byte code
- Results in native machine code: shared object `.so`

Have to jump through a few hoops to compile
- create a `setup.py` file that invokes `cythonize`
- create a stub `.py` file to import the original and call a function

Faster Python code basically for free
Outline

1. Performance
 - Measurement
 - Compilation

2. Concurrency
 - Multi-Thread
 - Multi-Process
 - Worker Pools
threading is the built-in threading library

Create a thread:

```python
from threading import Thread
args = (a1, a2, ...)
kwargs = {k1:v1, k2:v2, ...}
t = Thread(target=fun, args=args, kwargs=kwargs)
t.start()
```

`t.start()`:
- Creates a new thread in the current Python process
- That thread then calls `fun(*args, **kwargs)`
Waiting on Threads

- When a thread is created it can execute in parallel
- Sometimes you need to be sure the Thread is done
- \(t.join() \) → Waits until thread \(t \) finishes
- If you create a bunch of threads to do a task
 - The task isn’t finished until all of the threads finish
 - You should not return a partial result to the caller
 - \(.join() \) on all the workers before finishing
CPython has a Global Interpreter Lock (GIL).
This means that only one thread can execute at a time.
The exception is that threads release the GIL while doing I/O.
The reason is to make the implementation of CPython simple.
 Simple is better than complex.

Take away:
 Multi-threaded Python code is not worth your time.
 unless you are doing a lot of I/O.
Outline

1. Performance
 - Measurement
 - Compilation

2. Concurrency
 - Multi-Thread
 - Multi-Process
 - Worker Pools
Multi-processing

- multiprocessing is the built-in multiprocessing library
- Create a new process:

```python
from multiprocessing import Process
as = (a1, a2, ...)
k = {k1:v1, k2:v2, ...}
p = Process(target=fun, as=as, ks=k)
p.start()
```

- `p.start()`:
 - Creates a new Python process
 - That process then calls `fun(*args, **kwargs)`
- You should wait on processes with `p.join()`
Differences from Threads

- **Threads (In Python)**
 - Threads share memory
 - Changing a variable in one thread can effects other threads
 - Threads are *cheap* to make
 - Threads basically need only a stack and Instruction Pointer

- **Processes (In Python)**
 - Processes do *not* share the same memory
 - Processes are *expensive* to create
 - A new process might copy all of the data of its parent
 - Each process gets its own GIL
 - Multiple processes actually run computations in parallel
Inter-Process Communication

- Since Processes don’t share memory → need messages
- `from multiprocessing import Queue`

```python
result_queue = Queue()
p = Process(target=func,
            args=(data, result_queue))
p.start()
an = result_queue.get()
p.join()
```

- If you try to `join` a process with a non-empty queue
 - The process won’t terminate
 - You may `deadlock`
Outline

1. Performance
 - Measurement
 - Compilation

2. Concurrency
 - Multi-Thread
 - Multi-Process
 - Worker Pools
ProcessPoolExecutor

- Use a **pool** of worker processes instead of 1 process per task
 - Creating a process is expensive
 - Want to reuse the processes we already have

- `concurrent.futures` provides pools of workers

- `import concurrent.futures as cf`
- `cf.ProcessPoolExecutor`
 - Creates workers using `multiprocessing`
- `cf.ThreadPoolExecutor`
 - Creates workers using `threading`

- Map your workers to jobs

  ```python
  cpus = os.cpu_count()
  with cf.ProcessPoolExecutor(cpus) as ex:
      results = ex.map(function, [data1, ...])
  ```

Eric Kutschera (University of Pennsylvania)
Concurrency is Complicated

- This is the basics for clearly separable tasks
- What to do if multiple threads want the same data?
 - Locks, Barriers, Semaphores, ...
 - Potential Deadlock
- What if you want to run on multiple machines?
 - Distributed Computing?