Deep learning in Python
Instructor: Jorge Mendez
Deep learning
Perceptron

- Hyper-simplified computational model of neuron

\[y = f \left(\sum_i x_i w_i \right) = f(x^T w) \]

\[f(g) = \begin{cases} 0 & \text{if } g < 0 \\ 1 & \text{if } g \geq 0 \end{cases} \quad \text{(step function)} \]

- Look closely: this is the same as logistic regression
Artificial neural networks

• If we can make neurons, we can make a whole brain, too
 • Human brain has 100 billion neurons. We can’t make neural nets with 100 billion of these...
 • Plus real neurons and their connections are way more complex
• Each node represents a perceptron or neuron
• Each edge represents a weight
Notes on neural nets

• The function $f()$ can be any non-linear function
• Theorem: infinite-width networks can learn any function
 • In practice: well-designed networks can learn functions if the data is good
• Neural nets are trained via backpropagation
 • Fancy word for chain rule
 • It’s really just gradient descent
 • Then $f()$ needs to be a differentiable non-linear function
Activation functions

- \(f() \) is called an activation function
 - It determines when a neuron fires
- Sigmoid is the traditional activation
 - Differentiable approximation of the step function from the first slide
 - It suffers from a variety of problems in practice
- Nowadays, ReLU is the go-to choice for hidden layers

Sigmoid

\[
\sigma(x) = \frac{1}{1+e^{-x}}
\]

tanh

\[\tanh(x)\]

ReLU

\[\max(0, x)\]
Output layer activation

• The output layer’s activation is chosen based on the problem
• Binary classification — **sigmoid**: approximates 0-1
• Multi-class classification — **softmax**: a probability over all labels
• Regression — **linear**: no activation, so output can be in any range
Loss functions

• Similarly, the loss function varies depending on the problem
• Binary classification: binary cross-entropy loss (log-likelihood)
• Multi-class classification: cross-entropy loss
• Regression: quadratic loss
• It is possible to also add regularization terms
 • L2 regularization ($\lambda \|w\|_2^2$) is called weight decay in neural net speak
Overfitting and underfitting

- Underfitting: too simple model, can’t capture real function
- Overfitting: too complex model, learns even the noise
 - Can’t generalize well to unseen data
How to avoid overfitting?

• Use simpler models
 • Deep nets that are less deep and/or less wide

• Use weight decay

• Use dropout
 • Somewhat weird concept
 • Randomly drop neurons during training
 • Randomization makes the network robust
Features vs Deep learning

- Traditional ML models required *feature engineering*
 - Construct features from raw data
 - E.g., image processing to find edges, corners, segments...
- Deep learning can train models directly from raw data
 - Requires less knowledge of the structure of the data
 - Can “learn” better features than can be constructed manually
 - Simply works better for a lot of problems
Example features learned by deep learning
Deep learning in PyTorch
Contrast to scikit-learn

• Deep learning is still in a somewhat early stage
• There is no `model = DeepModel()` or `model.fit()` or `model.predict()`
• Instead, you create your own models and parts of the training process
Layer types

• Layers return a *function*, that can then be applied to any input

• `nn.Linear(in_size, out_size)` — linear layer: this is the one we’ve studied so far
 • Activation function is added after the linear layer

• `nn.ReLU()`, `nn.Tanh()`, `nn.Sigmoid()` — activation functions

• `nn.Dropout(p)` — dropout with probability `p`
Layer types

- **nn.Conv2d(in_channels, out_channels, kernel_size)** — convolutional layer: this is typically used for image processing. Incorporates notion of spatial relation between pixels
 - Assumes input is of shape $n \times \text{in_channels} \times H_{\text{in}} \times W_{\text{in}}$
 - Output is of shape $n \times \text{out_channels} \times H_{\text{out}} \times W_{\text{out}}$
 - kernel_size selects how many pixels are looked at simultaneously
- **nn.MaxPool2d(kernel_size)** — select the maximum value from each window of size kernel_size
 - Used to reduce the size of the image

- Typically, the pipeline for conv nets is

 image($128\times128\times3$) \rightarrow conv($3, 8, 3$) \rightarrow maxpool(3) \rightarrow ReLU() \rightarrow conv($8, 16, 3$) \rightarrow maxpool(3) \rightarrow ReLU()

 or something similar, until the image width is reduced to $1 \times 1 \times \text{out_channels}$, and then one or more linear layers with ReLU
Constructing a simple model

- \texttt{model = nn.Sequential(*args)}
- Each \texttt{arg} in \texttt{args} is a layer
- The model stacks the layers in the order in which they are passed
- \texttt{model(X)} gives the result of the output layer after passing \texttt{X} through each layer in the model
Constructing more complex models

• You can’t typically create conv nets with `nn.Sequential`
 • Or any other model that requires operations other than PyTorch layers
• You must create a class that sub-classes `nn.Module`
• In the `__init__()` method you create the layers
• In the `forward(X)` method you pass the input through each layer sequentially, and apply any other needed functions
• We will see an example
Loss functions

• Loss functions (like layers) return a function that can be applied to any input.
• `nn.MSELoss()` — mean squared error (for regression)
• `nn.BCEWithLogitsLoss()` — computes sigmoid and then the binary cross-entropy loss (for binary classification)
• `nn.CrossEntropyLoss()` — computes softmax and then cross-entropy loss (for multi-class classification)
• Note: both `BCEWithLogitsLoss` and `CrossEntropyLoss` take as input the output of a linear layer *without* activation
Backpropagation

• Crucial: PyTorch automatically computes derivatives for you
• The process is typically:

```python
model = SomeModel()
optimizer = SomeOptimizer()
y_hat = model(X)
loss = LossFn(y_hat, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
```
Training neural nets

• A single backpropagation step is equivalent to a single gradient descent step
• Iteratively do backpropagation to train the net
• Typically done in mini-batches
 • It is too expensive to evaluate the network on all data
 • Choose a mini-batch of data at each time
Tensors

• PyTorch tensors are similar to NumPy arrays
 • In fact, the underlying data is a NumPy array

• They have additional information that is used for backpropagation
 • torch.Tensor(iterable) — like the NumPy constructor, parses the iterable recursively

• torch.from_numpy(ndarray) — does not copy the ndarray
Live coding
More notes

• Typically, for large models you train on GPU
 • Unfortunately, recent versions of PyTorch don’t work on GPUs for Mac

• Deep learning is a huge topic, with lots of new concepts introduced every year

• It is widely studied in academia, and it is rapidly being adopted in industry as well
Takeaways

• PyTorch is substantially harder to use than scikit-learn
 • Although it is easier than TensorFlow
• Deep models are all the rave, they work great with lots of data
• If you don’t have a lot of data, you are better off using simpler models