Deep learning in Python

Instructor: Jorge Mendez
Logistics

• There is a survey out about time-zones on Piazza. Please fill it out now!
• Homework 6 is out, due this Friday
• Homework 7 will be out this Friday
Deep learning
Why deep learning?

• Naïve features often require highly complex functions
 • E.g., all pixels of a 480 x 320 image as one long vector of features

• SVMs use the kernel trick to get around this
 • Doesn’t work well if there are too many data points (e.g., images)

• Deep learning learns the “features” necessary for the model to make good predictions
Examples of the success of deep learning

• Pix2pix models to generate images

• Machine translation systems

• Super-human game-playing
Perceptron

- Hyper-simplified computational model of neuron

\[y = f \left(\sum_i x_i w_i \right) = f(x^T w) \]

\[f(g) = \begin{cases}
0 & \text{if } g < 0 \\
1 & \text{if } g \geq 0
\end{cases} \quad \text{(step function)} \]

- Look closely: this is the same as logistic regression
Problem with the perceptron

• It is too simple, and can’t learn complex functions

• The classic example: XOR
 • There is no perceptron (weight assignment) that can solve the XOR

• This shouldn’t be surprising... it’s just a linear classifier!
Artificial neural networks

• If we can make neurons, we can make a whole brain, too
 • Human brain has 100 billion neurons. We can’t make neural nets with 100 billion of these...
 • Plus real neurons and their connections are way more complex
• Each node represents a perceptron or neuron
• Each edge represents a weight
Notes on neural nets

• The function $f()$ can be any non-linear function
• Theorem: infinite-width networks can learn any function
 • In practice: well-designed networks can learn functions if the data is good
• Neural nets are trained via backpropagation
 • Fancy word for chain rule
 • It’s really just gradient descent
 • Then $f()$ needs to be a differentiable non-linear function
Activation functions

- $f()$ is called an activation function
 - It determines when a neuron fires
- Sigmoid is the traditional activation
 - Differentiable approximation of the step function from the first slide
 - It suffers from a variety of problems in practice
- Nowadays, ReLU is the go-to choice for *hidden* layers
Output layer activation

• It is the prediction function computed over “learned features”
• It is chosen based on the problem
 • Binary classification — sigmoid: approximates 0-1
 • Multi-class classification — softmax: a probability over all labels
 • Regression — linear: no activation, so output can be in any range
Loss functions

• Loss function: objective to minimize via gradient descent
 • Tells the network where to move weights based on correctness of output
• Also varies depending on the problem
• Binary classification: \textit{binary cross-entropy} loss (log-likelihood)
• Multi-class classification: \textit{cross-entropy} loss
• Regression: \textit{quadratic} loss
• It is possible to also add regularization terms
 • L2 regularization ($\lambda \| w \|_2^2$) is called weight decay in neural net speak
Overfitting and underfitting

• Underfitting: too simple model, can’t capture real function
• Overfitting: too complex model, learns even the noise
 • Can’t generalize well to unseen data
How to avoid overfitting?

• Use simpler models
 • Deep nets that are less deep and/or less wide

• Use weight decay

• Use dropout
 • Somewhat weird concept
 • Randomly drop neurons during training
 • Randomization makes the network robust
Features vs Deep learning

• Traditional ML models required *feature engineering*
 • Construct features from raw data
 • E.g., image processing to find edges, corners, segments...

• Deep learning can train models directly from raw data
 • Requires less knowledge of the structure of the data
 • Can “learn” better features than can be constructed manually
 • Simply works better for a lot of problems
Example features learned by deep learning
Deep learning in PyTorch
Contrast to scikit-learn

• Deep learning is still in a somewhat early stage
• There is no `model = NeuralNetwork()` or `model.fit()` or `model.predict()`
• Instead, you create your own models and parts of the training process
Tensors

• PyTorch tensors are similar to NumPy arrays
 • In fact, the underlying data *is* a NumPy array
• They have additional information that is used for backpropagation
• `torch.Tensor(iterable)` — like the NumPy constructor, parses the iterable recursively
• `torch.from_numpy(ndarray)` — does not copy the ndarray
• Input type to all Pytorch functions
Layer types

• Layers return a *function*, that can then be applied to any input

• `nn.Linear(in_size, out_size)` — linear layer: this is the one we’ve studied so far
 • Activation function is added after the linear layer

• `nn.ReLU()`, `nn.Tanh()`, `nn.Sigmoid()` — activation functions

• `nn.Dropout(p)` — dropout with probability \(p \)
Layer types

- **nn.Conv2d(in_channels, out_channels, kernel_size)** — convolutional layer: this is typically used for image processing. Incorporates notion of spatial relation between pixels
 - Assumes input is of shape $n \times \text{in_channels} \times H_{\text{in}} \times W_{\text{in}}$
 - Output is of shape $n \times \text{out_channels} \times H_{\text{out}} \times W_{\text{out}}$
 - kernel_size selects how many pixels are looked at simultaneously
- **nn.MaxPool2d(kernel_size)** — select the maximum value from each window of size kernel_size
 - Used to reduce the size of the image

- Typically, the pipeline for conv nets is

 image(128x128x3) \rightarrow conv(3, 8, 3) \rightarrow maxpool(3) \rightarrow ReLU() \rightarrow conv(8, 16, 3) \rightarrow maxpool(3) \rightarrow ReLU()

 or something similar, until the image width is reduced to $1 \times 1 \times \text{out_channels}$, and then one or more linear layers with ReLU
Live example
Constructing a simple model

• `model = nn.Sequential(*args)`
• Each arg in `args` is a layer
• The model stacks the layers in the order in which they are passed
• `model(X)` gives the result of the output layer after passing X through each layer in the model
Live example
Constructing more complex models

• You can’t typically create conv nets with `nn.Sequential`
 • Or any other model that requires operations other than PyTorch layers
• You must create a class that sub-classes `nn.Module`
• In the `__init__()` method you create the layers
• In the `forward(X)` method you pass the input through each layer sequentially, and apply any other needed functions
• We will see an example
Loss functions

- Loss functions (like layers) return a function that can be applied to any input.
- `nn.MSELoss()` — mean squared error (for regression)
- `nn.BCEWithLogitsLoss()` — computes sigmoid and then the binary cross-entropy loss (for binary classification)
- `nn.CrossEntropyLoss()` — computes softmax and then cross-entropy loss (for multi-class classification)
- Note: both `BCEWithLogitsLoss` and `CrossEntropyLoss` take as input the output of a linear layer *without* activation
Backpropagation

• Crucial: PyTorch automatically computes derivatives for you
• The process is typically:

```python
model = SomeModel()
optimizer = SomeOptimizer()
y_hat = model(X)
loss = LossFn(y_hat, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
```
Training neural nets

- A single backpropagation step is equivalent to a single gradient descent step
- Iteratively do backpropagation to train the net
- Typically done in mini-batches
 - It is too expensive to evaluate the network on all data
 - Choose a mini-batch of data at each time
Live example
Data handling functions

- `torch.utils.data.DataSet` — abstract class to represent datasets
 - Includes `__getitem__` method for bracket indexing
 - `torchvision` includes implementations for many common computer vision datasets

- `torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False)` — class to sample data from a dataset
 - Useful for mini-batch training!
 - Optionally shuffles the data (recommended)
 - It is an iterable, which means you can do a `for` over it
Torchvision datasets

- `torchvision.datasets.<DatasetName>(root, train=True, transform=None, download=False)`
 - `<DatasetName>` can be any of many datasets (e.g., MNIST, ImageNet CIFAR10)
 - `root`: path to where the data is located
 - `train`: whether to load the training set or the test set
 - `transform`: a transformation function to apply to each data point
 - `download`: whether to download the data set

- `__getitem__` returns a `transform(image), label` tuple
Torchvision transforms

• Classes that output a function to apply to each input
• `torchvision.transforms.Compose(transforms)` — chain transforms one after the other from list of transforms
• `torchvision.transforms.ToTensor()` — transform a PIL image or NumPy array to a tensor
 • Also scales images in \([0, 255]\) to \([0.0, 1.0]\)
• `torchvision.transforms.Normalize(mean, std)` — normalize a tensor image with given mean and std to standard Gaussian
 • mean and std have one scalar for each channel in the image
• `torchvision.transforms.Lambda(lambda_)` — apply user-defined function
Live example
More notes

• Typically, for large models you train on GPU
 • Unfortunately, recent versions of PyTorch don’t work on GPUs for Mac

• Deep learning is a huge topic, with lots of new concepts introduced every year

• It is widely studied in academia, and it is rapidly being adopted in industry as well
Takeaways

• PyTorch is substantially harder to use than scikit-learn
 • Although it is easier than TensorFlow
• Deep models are all the rave, they work great with lots of data
• If you don’t have a lot of data, you are better off using simpler models