NumPy and Matplotlib

Instructor: Jorge Mendez
What is NumPy?

• Python’s main scientific computing package
• Main object: N-dimensional array (ndarray)
• Lots of compiled operations (fast!)
 • Math
 • Logic
 • I/O
 • Linear algebra
 • Statistics
 • Randomization
 • ...
ndarray

• Homogeneous type (typically numbers)
• Fixed size: changing the size of an ndarray creates a new one
 • Memory footprint may change dynamically as elements of an ndarray can be arbitrary Python objects
• Supports advanced operations on large amounts of data with less code and more efficiently
• Basis for most scientific computing packages
• Element-by-element operations are default
• Each dimension is an axis
 • By convention, last two axes correspond to rows and columns of matrices
Vectorization

- Vectorized code avoids explicit indexing and looping over arrays
 - Handled behind-the-scenes by optimized, pre-compiled C code

```python
for i in range(len(a)):
    c.append(a[i] * b[i])  →  c = a * b
```

- For large arrays, vectorized operations are often significantly faster than equivalent loop operations
- Vectorization is a different way of thinking about code, but well worth learning
- Vectorized code typically resembles mathematical notation
 - E.g., `a.dot(b) + c` is NumPy for $a \cdot b + c$
Creating arrays

- **np.array(sequence)** — copy elements of sequence to an array
 - Type of the array is deduced from element types in sequence
 - Nested sequences of depth N are transformed into N-dimensional arrays
 - Optional argument **dtype** to specify the array type

- **np.zeros(shape), np.ones(shape)** — array of all-zeros/ones with fixed shape
 - Avoids growing size if elements are initially unknown but shape is known
 - **shape** is a tuple of axis sizes

- **np.empty(shape)** — array of arbitrary elements with fixed shape

- **np.zeros_like(a), np.ones_like(a), np.empty_like(a)** — copy shape from a
Creating arrays

• `np.arange(start, stop, step)` — analogous to `range()`
 • All arguments may be floating points
 • E.g., `np.arange(0, 1, 0.1)`
 • Floating point precision makes exact number of resulting elements hard to predict

• `np.linspace(start, stop, num_elements)` — like `np.arange()`, but with fixed number of elements
Basic operations

• Arithmetic operators (+, −, *, /) are applied element-wise
• Matrix product is performed with a @ b or a.dot(b)
 • Not with *
• Some operations (+=, -=, *=, /=) act in place
• Many unary operations (sum, max, min, cumsum) are methods of ndarray
 • E.g., a.max()
 • Operate by default on “flattened” array
 • Optional argument axis indicates dimension along which to operate
• Universal operations (exp, sin, cos, sqrt) also operate element-wise
Unary operation examples

```python
>>> import numpy as np
>>> a = np.array([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]])
>>> print(a)  # 3x4 matrix
[[ 0  1  2  3]
 [ 4  5  6  7]
 [ 8  9 10 11]]

>>> a.max()  # overall max
11

>>> a.min(axis=1)  # max on each row
[0, 4, 8]

>>> a.cumsum(axis=0)  # cumulative sum along each column
[[ 0,  1,  2,  3],
 [ 4,  6,  8, 10],
 [12, 15, 18, 21]]
Indexing, slicing, and iterating

- One-dimensional arrays are indexed and sliced as sequences
- Multi-dimensional arrays have one index per axis
  - Entire index is given as a tuple
  - Each index can itself be a slice
  - `a[:, 1]` — first ten elements of the second column
  - `a[−10::, :]` — last ten elements of all columns
  - Missing slices are treated as complete slices (···)
  - Use dots (···) to indicate all needed complete slices
    - E.g., `a[:, 3, 1:6, ···, 5:]`
- Iterating is done over first axis
  - Use `a.flat` to iterate element-wise
Modifying an array’s shape

• `a.ravel()` — return flattened array into a single dimension
• `a.reshape(new_shape)` — return array with modified shape
• `a.T` — return transposed array
  • For N-D arrays, revert the order of the axes
• `a.resize(shape)` — same as reshape, but modify a directly
• If an axis is –1, number of elements is automatically computed
• Default order is C-style: last index changes fastest
  • Optional argument `order='F'` uses FORTRAN-style: first index changes fastest
Array shape modification examples

```python
>>> a = np.array([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]])
>>> a.ravel() # flatten array
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

>>> a.T # transpose array
[[0, 4, 8],
 [1, 5, 9],
 [2, 6, 10],
 [3, 7, 11]]

>>> a.reshape((2,6)) # C-style
[[0, 1, 2, 3, 4, 5],
 [6, 7, 8, 9, 10, 11]]

>>> a.reshape((2,6), order='F') # FORTRAN-style
[[0, 8, 5, 2, 10, 7],
 [4, 1, 9, 6, 3, 11]]
```
Broadcasting

• Many functions can operate on arrays that do not have the same shape
• Broadcasting prescribes the behavior of all functions in these cases
• Two simple rules
  1. If not all arrays have the same number of axes, 1s are *prepended* to smaller arrays until all arrays have the same number of dimensions
  2. Every axis of size 1 is treated as if it were the same size as the largest array along that axis, assuming all values are the same as the singleton element
• At this point, it must hold that all arrays have the same shape, or they can’t be broadcast together
Broadcasting examples

```python
>>> a = np.array([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]])
>>> a + 5 # 5 is treated as a 3x4 matrix of all-5
[[5, 6, 7, 8],
 [9, 10, 11, 12],
[13, 14, 15, 16]]

>>> b = np.array([4, 3, 2, 1])
>>> a + b # b: 0x4 -> 1x4 -> 3x4
[[4, 4, 4, 4],
 [8, 8, 8, 8],
[12, 12, 12, 12]]
```
Broadcasting examples

>>> b = np.array([3, 2, 1])
>>> a + b
# b: 0x3 -> 1x3 -> ??
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ValueError: operands could not be broadcast together with shapes (3,4) (3,)

>>> b = np.array([[3], [2], [1]])
>>> a + b
# b: 3x1 -> 3x4
[[ 3,  4,  5,  6],
 [ 6,  7,  8,  9],
[ 9, 10, 11, 12]]
Indexing with arrays of indices

• $a[\text{idx\_arr}]$ — the idx\_arr elements of $a$
  • Each element of idx\_arr is treated as an index into $a$
  • If $a$ is multidimensional, elements index over the first axis
  • The first dimensions of the resulting array match idx\_array’s shape
  • The last dimensions of the resulting array match $a$’s shape after the first axis

• $a[\text{idx\_i}, \text{idx\_j}]$ — index over two dimensions of $a$
  • idx\_i and idx\_j must be the same shape
  • Each idx\_i, idx\_j pair is treated as an index into the first two axes of $a$

• Both can also be used for assigning values to $a$
Arrays of indices examples

```python
>>> a = np.arange(5)
>>> idx_i = np.array([0, 1, 2, 1])
>>> a[idx_i]
[0, 1, 2, 1]

>>> idx_2d = np.array([[0, 2], [1, 3]])
>>> a[idx_2d]
[[0, 2],
 [1, 3]]
```
Arrays of indices examples

```python
>>> b = np.array([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]])
>>> idx_i = np.array([0, 1, 2, 1])
>>> b[idx_i]
[[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11],
 [4, 5, 6, 7]]

>>> idx_j = np.array([3, 2, 1, 2])
>>> b[idx_i, idx_j]
[3, 6, 9, 6]
```
Indexing with Boolean arrays

- `a[bool_array]` — elements of `a` for which `bool_array` is True
  - `bool_array` is the same shape as `a`
  - Resulting array is 1-dimensional
  - Useful for getting elements that match a condition

- `a[bool_i, bool_j]` — closer to index arrays
  - `bool_i, bool_j` must be 1-dimensional
  - Their size must be the same as `a`’s corresponding axis
  - Typically only one or the other: keep all rows/columns matching some condition
Boolean indexing examples

```python
>>> b = np.array([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]])
>>> b[b > 4]
[5, 6, 7, 8, 9, 10, 11]

>>> b[b > 4] = 4
>>> print(b)
[[0 1 2 3]
 [4 4 4 4]
 [4 4 4 4]]
```
Boolean indexing examples

```python
>>> idx_i = np.array([True, False, True])
>>> idx_j = np.array([True, True, False, False])
>>> b[idx_i]
[[0, 1, 2, 3],
 [4, 4, 4, 4]]

>>> b[:, idx_j]
[[0, 1],
 [4, 4],
 [4, 4]]

>>> b[idx_i, idx_j]
[0, 4]
```
The `ix()` function

- Indexing with arrays doesn’t directly allow us to get a given set of rows and a given set of columns

```python
>>> b = np.array([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]])
>>> idx_i = np.array([0, 2])
>>> idx_j = np.array([0, 2, 3])
>>> b[idx_i, idx_j]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IndexError: shape mismatch: indexing arrays could not be broadcast together with shapes (2,)(3,)
```
- Broadcasting combined with indexing does
- `ix()` gives us the required broadcastable arrays

```python
>>> b[np.ix_(idx_i, idx_j)]
[[0, 2, 3],
 [8, 10, 11]]
```
Linear algebra

• `np.linalg.inv(a)` — matrix inverse
• `np.eye(n)` — identity matrix of size $n$
• `np.trace(a)` — trace of $a$ (sum of diagonal elements)
• `np.linalg.solve(a, b)` — solve $ax = b$ for $x$
• `np.linalg.eig(a)` — eigenvalues and eigenvectors of $a$
There’s much more to NumPy

• This barely covers NumPy’s quickstart tutorial!
• It’s impossible to learn all of NumPy’s functionality
• So how do you know when NumPy has the function you need?
  • Usually, if you are looping through an array, you can vectorize your code
  • If fancy indexing is not enough, then there might be a NumPy function for what you need
• Where to look next?
  • I/O
  • np.random
  • Structured arrays
  • scipy
What is Matplotlib?

• Python’s primary plotting package
• Widely used for data visualization
• Easy to use for simple visualizations, but allows for fine-grained control for experienced users
• We will look only into matplotlib.pyplot
  • Highest-level module
  • Create figures, add elements such as lines and text
Parts of a figure

- **Figure**: the whole figure. Contains Axes, artists (titles, legends). Should have at least one Axes

```python
import matplotlib.pyplot as plt
fig = plt.figure() # no Axes
fig.suptitle('figure_title')
plt.show()
```
Parts of a figure

• **Axes**: a plot. There may be more than one per Figure. Contains Axis objects (2 for 2-D plots, 3 for 3-D). Has a title, an x-label, and a y-label.

```python
fig, axes_lst = plt.subplots(2, 2) # 2x2 grid of Axes
fig.suptitle('Title')
axes_lst[0, 0].set_title('Axes 0')
axes_lst[0, 0].set_ylabel('y')
axes_lst[0, 0].set_xlabel('x')
plt.show()
```

• **Axis**: number-line objects. Set graph limits and ticks
Inputs to plotting functions

- `np.array` is the expected type by all plotting functions
- Array-like objects (lists, tuples, Pandas dataframes) should be converted to arrays by the user
“Current”

• All functions in pyplot can refer to a “current” Figure and Axes
• Both can be created automatically
• This avoids the need to manually create and refer to figures/axes
Example with “current”

```python
x = np.linspace(0, 2, 100)
plt.plot(x, x, label='linear')
plt.plot(x, x**2, label='quadratic')
plt.plot(x, x**3, label='cubic')
plt.xlabel('x label')
plt.ylabel('y label')
plt.title("Simple Plot")
plt.legend()
plt.show()
```
Example without “current”

```python
x = np.arange(0, 10, 0.2)
y = np.sin(x)
fig, ax = plt.subplots()
ax.plot(x, y)
plt.show()
```
LOTS more to pyplot

• What we covered doesn’t even make a dent into pyplot’s capabilities
  • Let alone matplotlib...

• Where to go from here?
  • Formatting: markers and colors for each point
  • Scatter plots: no curve generation
  • Bar charts: for categorical variables
  • Managing multiple figures and multiple axes within a figure
  • 3-D plotting

• The documentation is very complete, and there is a huge community using matplotlib
Live coding
Takeaways

• NumPy provides a very strong basis for scientific computing
• ALWAYS vectorize your code when working with NumPy
  • Sometimes the speedups are quite surprising
• NumPy provides some fancy indexing beyond Python’s basic indexing
  • Really useful for vectorizing code
• Matplotlib gives us lots of basic plotting functionality