CIS192 Python Programming

Introduction

Robert Rand

University of Pennsylvania

September 16, 2015

@

Robert Rand (University of Pennsylvania) CIS 192 September 16, 2015 1/17



Outline

0 Iterators, Generators, Exceptions, and IO
lterators

@ Generators

@ Exceptions
()
°

Input Output
Context Managers

]

Robert Rand (University of Pennsylvania) CIS 192 September 16, 2015 2/17



lterators

@ An iterable is an object which supports __iter__ ()
@ __iter__ () should return an object that:

» returns the next item from callsto __next__ ()
> raises StopIterationif __next__ () called too many times
» returns self from__iter ()

@

Robert Rand (University of Pennsylvania) CIS 192 September 16, 2015 3/17



Expanding For Loops

@ for x in iterable expands to callsto iter and next
@ An iterator is constructed: iter (iterable)

@ next () is called on that iterator

@ Values are bound to x

@ StopIteration is caught and the loop terminates

@

Robert Rand (University of Pennsylvania) CIS 192 September 16, 2015 4/17



Generators

@ A generator is a function that behaves like an iterable
@ next () will execute the function body until yield is reached
@ yieldis like return except that the state is remembered
@ Reaching the end of the function raises StopIteration
@ A generator comprehension creates a generator object
@ g = (expr for x in iterable) Translates:

def g():

for x in iterable:
yield expr

@

Robert Rand (University of Pennsylvania) CIS 192 September 16, 2015 5/17



Why use Generators

@ Memory Efficient
Keep 1 value in memory at a time
The function state is minimal in terms of memory
Use a generator over a list whenever you iterate
Bad: for x in [expr for y in iterable]
Good for x in (expr for y in iterable)
@ Incremental callbacks

» Yield updates as the function executes

v

v vy VvYy

@

Robert Rand (University of Pennsylvania) CIS 192 September 16, 2015 6/17



Infinite Generators

@ Generators don’t need to ever return StopIteration
@ itertools.count generates an infinite sequence of naturals
@ itertools.islice takes a slice of the given generator

@ Built in higher-order generator functions:
» itertools.imap maps a function onto two potentially infinite
generators
» itertools.ifilter applies a filter to a potentially infinite
generator

@

Robert Rand (University of Pennsylvania) CIS 192 September 16, 2015 7/17



Raise Exceptions

@ An exception can be raised with the raise keyword

@ Raising an exception sends control back up to the nearest
enclosing exception handler
@ If the exception is not handled

» The interpreter prints a stack trace
» The program exits or returns to the interactive loop

@

Robert Rand (University of Pennsylvania) CIS 192 September 16, 2015 8/17



Types of Exceptions

BaseException: Don’t inherit directly from this
Exception: Use this as the base class
AttributeError: obj.attribute fails
IndexError: invalid index to seq[i]
KeyError: Failed dictionary look-up
StopIteration: Raised in next () for iterators
TypeError: Wrong type or number of arguments
ValueError: Right type but wrong value
OSError: system call errors (file not found)

@

Robert Rand (University of Pennsylvania) CIS 192 September 16, 2015 9/17



Catching Exceptions

@ Enclose code that might throw an exception in a t ry block
@ Specify an except block to be executed if an exception is raised

@ It's best to specify specific errors with
except ExceptionType as name:

@ Catch any type of error with except :

@ Include an else block if you need to do something when
there isn’t an error

@ The finally block gets executed no matter what
@ You can have multiple except clauses
@ There must be at least 1 except clause ora finally clause

@

Robert Rand (University of Pennsylvania) CIS 192 September 16, 2015 10/17



User Defined Exceptions

@ Often inheriting from Exception is enough

class MyException (Exception)
pass

@ You can define other attributes
@ Access those attributes when the exception is caught
@ Implementing __str__and __repr___is also useful

@

Robert Rand (University of Pennsylvania) CIS 192 September 16, 2015 11/17



Standard Input

@ You can ask the user for input on STD_IN

@ input () will evaluate from STD_IN. Do Not Use!

@ raw_input () will read and return STD_IN up to a newline

@ raw_input (prompt) prints str (prompt) before reading input
@ Standard In is accessible as a file-object: sys.stdin

@ print (string) sends stringto STD_OUT

@ print (s, end= ) prints without a trailing newline

@ Standard In is accessible as a file-object: sys.stdout

@

Robert Rand (University of Pennsylvania) CIS 192 September 16, 2015 12/17



File 10

open (name, mode) returns a file-object
name is the path of the file to open

If mode == , the file is open in read-only mode
If mode == , the file is open in write-only mode
> Truncates the file first

If mode == , like but appends to the file
Supplying after one of is for reading and writing
» Starting position in file depends on and still truncates

@

Robert Rand (University of Pennsylvania) CIS 192 September 16, 2015 13/17



File Operations

@ Given a file object £ = open (name, )

@ f.readline () reads aline

@ f.read () reads the whole file (up to EOF)

@ f.write (string) writes string without adding a newline

@ f.writelines (1ines) writes lines without adding newlines
@ f.flush () flushes the write buffers

@ f.close () flushes and closes the file

@ f.seek (offset) sets the position in the file

@

Robert Rand (University of Pennsylvania) CIS 192 September 16, 2015 14/17



With Statement

@ with expr as name: begins a managed block
@ Before the block is executed:

» The __enter__ () method of expr is called
» The result is assigned to name

@ The block is executed in a t ry block
@ Any exceptions are passedtothe __exit__ () method of expr
@ _ exit_ (exc_type, exc_val, exc_trace_back)

» The argumentsto __exit__ can be used to handle certain errors

@ finally_ exit__ (None, None, None) will be called

@

Robert Rand (University of Pennsylvania) CIS 192 September 16, 2015 15/17



File With Statements

@ It's good practice to always close files
@ Remembering is hard ...
@ with open(...)as f_name:

@ The __enter__and__exit__ methods of file-objects
make sure that the file gets closed

@

Robert Rand (University of Pennsylvania) CIS 192 September 16, 2015 16/17



Take-aways

@ Use a Generator if you don’t need to have it all at once
@ If something can fail — use a t ry block
@ with statements can manage resources for you

@

Robert Rand (University of Pennsylvania) CIS 192 September 16, 2015 17/17



	Iterators, Generators, Exceptions, and IO
	Iterators
	Generators
	Exceptions
	Input Output
	Context Managers


