
CIS192 Python Programming
Introduction

Robert Rand

University of Pennsylvania

September 16, 2015

Robert Rand (University of Pennsylvania) CIS 192 September 16, 2015 1 / 17



Outline

1 Iterators, Generators, Exceptions, and IO
Iterators
Generators
Exceptions
Input Output
Context Managers

Robert Rand (University of Pennsylvania) CIS 192 September 16, 2015 2 / 17



Iterators

An iterable is an object which supports __iter__()
__iter__() should return an object that:

I returns the next item from calls to __next__()
I raises StopIteration if __next__() called too many times
I returns self from __iter__()

Robert Rand (University of Pennsylvania) CIS 192 September 16, 2015 3 / 17



Expanding For Loops

for x in iterable expands to calls to iter and next

An iterator is constructed: iter(iterable)
next() is called on that iterator
Values are bound to x

StopIteration is caught and the loop terminates

Robert Rand (University of Pennsylvania) CIS 192 September 16, 2015 4 / 17



Generators

A generator is a function that behaves like an iterable
next() will execute the function body until yield is reached
yield is like return except that the state is remembered
Reaching the end of the function raises StopIteration
A generator comprehension creates a generator object
g = (expr for x in iterable) Translates:

def g():
for x in iterable:
yield expr

Robert Rand (University of Pennsylvania) CIS 192 September 16, 2015 5 / 17



Why use Generators

Memory Efficient
I Keep 1 value in memory at a time
I The function state is minimal in terms of memory
I Use a generator over a list whenever you iterate
I Bad: for x in [expr for y in iterable]
I Good for x in (expr for y in iterable)

Incremental callbacks
I Yield updates as the function executes

Robert Rand (University of Pennsylvania) CIS 192 September 16, 2015 6 / 17



Infinite Generators

Generators don’t need to ever return StopIteration

itertools.count generates an infinite sequence of naturals
itertools.islice takes a slice of the given generator
Built in higher-order generator functions:

I itertools.imap maps a function onto two potentially infinite
generators

I itertools.ifilter applies a filter to a potentially infinite
generator

Robert Rand (University of Pennsylvania) CIS 192 September 16, 2015 7 / 17



Raise Exceptions

An exception can be raised with the raise keyword
Raising an exception sends control back up to the nearest
enclosing exception handler
If the exception is not handled

I The interpreter prints a stack trace
I The program exits or returns to the interactive loop

Robert Rand (University of Pennsylvania) CIS 192 September 16, 2015 8 / 17



Types of Exceptions

BaseException: Don’t inherit directly from this
Exception: Use this as the base class
AttributeError: obj.attribute fails
IndexError: invalid index to seq[i]

KeyError: Failed dictionary look-up
StopIteration: Raised in next() for iterators
TypeError: Wrong type or number of arguments
ValueError: Right type but wrong value
OSError: system call errors (file not found)

Robert Rand (University of Pennsylvania) CIS 192 September 16, 2015 9 / 17



Catching Exceptions

Enclose code that might throw an exception in a try block
Specify an except block to be executed if an exception is raised
It’s best to specify specific errors with
except ExceptionType as name:

Catch any type of error with except:

Include an else block if you need to do something when
there isn’t an error
The finally block gets executed no matter what
You can have multiple except clauses
There must be at least 1 except clause or a finally clause

Robert Rand (University of Pennsylvania) CIS 192 September 16, 2015 10 / 17



User Defined Exceptions

Often inheriting from Exception is enough

class MyException(Exception)
pass

You can define other attributes
Access those attributes when the exception is caught
Implementing __str__ and __repr__ is also useful

Robert Rand (University of Pennsylvania) CIS 192 September 16, 2015 11 / 17



Standard Input

You can ask the user for input on STD_IN
input() will evaluate from STD_IN. Do Not Use!
raw_input() will read and return STD_IN up to a newline
raw_input(prompt) prints str(prompt) before reading input
Standard In is accessible as a file-object: sys.stdin
print(string) sends string to STD_OUT
print(s, end=’’) prints without a trailing newline
Standard In is accessible as a file-object: sys.stdout

Robert Rand (University of Pennsylvania) CIS 192 September 16, 2015 12 / 17



File IO

open(name, mode) returns a file-object
name is the path of the file to open
If mode == ’r’, the file is open in read-only mode
If mode == ’w’, the file is open in write-only mode

I ’w’ Truncates the file first

If mode == ’a’, like ’w’ but appends to the file
Supplying ’+’ after one of ’rwa’ is for reading and writing

I Starting position in file depends on ’rwa’ and ’w’ still truncates

Robert Rand (University of Pennsylvania) CIS 192 September 16, 2015 13 / 17



File Operations

Given a file object f = open(name, ’a+t’)

f.readline() reads a line
f.read() reads the whole file (up to EOF)
f.write(string) writes string without adding a newline
f.writelines(lines) writes lines without adding newlines
f.flush() flushes the write buffers
f.close() flushes and closes the file
f.seek(offset) sets the position in the file

Robert Rand (University of Pennsylvania) CIS 192 September 16, 2015 14 / 17



With Statement

with expr as name: begins a managed block
Before the block is executed:

I The __enter__() method of expr is called
I The result is assigned to name

The block is executed in a try block
Any exceptions are passed to the __exit__() method of expr
__exit__(exc_type, exc_val, exc_trace_back)

I The arguments to __exit__ can be used to handle certain errors

finally __exit__(None, None, None) will be called

Robert Rand (University of Pennsylvania) CIS 192 September 16, 2015 15 / 17



File With Statements

It’s good practice to always close files
Remembering is hard ...
with open(...)as f_name:

The __enter__ and __exit__ methods of file-objects
make sure that the file gets closed

Robert Rand (University of Pennsylvania) CIS 192 September 16, 2015 16 / 17



Take-aways

Use a Generator if you don’t need to have it all at once
If something can fail → use a try block
with statements can manage resources for you

Robert Rand (University of Pennsylvania) CIS 192 September 16, 2015 17 / 17


	Iterators, Generators, Exceptions, and IO
	Iterators
	Generators
	Exceptions
	Input Output
	Context Managers


