
CIS192 Python Programming
Graphical User Interfaces

Robert Rand

University of Pennsylvania

December 03, 2015

Robert Rand (University of Pennsylvania) CIS 192 December 03, 2015 1 / 21

Outline

1 Performance
Measurement
Compilation

2 Concurrency
Multi-Thread
Multi-Process
Worker Pools

Robert Rand (University of Pennsylvania) CIS 192 December 03, 2015 2 / 21

Time and Clock

time.time
I Returns the amount of time (in seconds) since the Epoch.
I January 1, 1970 on UNIX and UNIX-based systems (eg. Linux,

OSX)
I January 1, 1601 on Windows
I Higher accuracy on UNIX machines

time.clock
I Behaves differently on UNIX and Windows machines.
I Shows processor time on UNIX machines (ignores time sleeping)
I Shows time since first call on Windows.
I Higher accuracy on Windows machines.

Robert Rand (University of Pennsylvania) CIS 192 December 03, 2015 3 / 21

Timeit

The timeit module times execution of bits of code
Uses time.clock on Windows and time.time on everything
else.
It avoids some common traps for timing code

I Setup code is separated out and not timed
I Garbage collecting is turned off
I Repeated trials suppress measurement noise

Use timeit when you want to see which of 2 options is faster

Robert Rand (University of Pennsylvania) CIS 192 December 03, 2015 4 / 21

Using Timeit

import timeit

t = timeit.Timer(stmt=stmt_code, setup=setup_code)
t.timeit(number=num_trials)

setup is executed once before any stmts
stmt is executed num_trials times
Returns time in seconds taken to execute
The time does not include executing setup

Copying the code to execute into a multi-line string could be useful
A better idea is to import it:

I setup = ’from __main__ import func_to_time’

Robert Rand (University of Pennsylvania) CIS 192 December 03, 2015 5 / 21

Command Line and iPython Timeit

Command Line
I Use python -m timeit ‘‘[command]’’
I Include setup code as first argument with -s
I Chooses an appropriate number of iterations for you.
I Good for small snippets of mostly native code.

iPython
I Allows you to type %timeit [function] in the iPython REPL
I Has local scope: No need to import required functions.

Robert Rand (University of Pennsylvania) CIS 192 December 03, 2015 6 / 21

Profile

profile and cProfile are built-in profilers
Profiling a program gives data on a particular execution
Shows which functions the program spends time in
Useful if a program is running slower than you expect/want
Profiling can identify bottleneck functions
Then you can target optimizations to those functions
Since there is overhead to track which functions are being called:

I Profiling can take longer than regular execution
I The output should not be used to benchmark (use timeit)

Robert Rand (University of Pennsylvania) CIS 192 December 03, 2015 7 / 21

profile vs cProfile

profile and cProfile
I have the same interface
I cProfile is a faster C extension

To profile a function call: cProfile.run(’function()’)
Profile the whole program with

if __name__ == ’__main__’:
cProfile.run(’main()’)

Robert Rand (University of Pennsylvania) CIS 192 December 03, 2015 8 / 21

pstats to Format Output

Nice printing of output with pstats

if __name__ == ’__main__’:
cProfile.run(’main()’, ’restats’)
p = pstats.Stats(’restats’)
p.sort_stats(’cumulative’).print_stats()

Save the output to a file ’restats’

Parse that file with pstats

Sort by a column of the output

Robert Rand (University of Pennsylvania) CIS 192 December 03, 2015 9 / 21

Byte Code

The CPython interpreter:
I Generates byte code (.pyc)
I Executes that byte code

When a Python module is imported byte code is saved
Byte code is put in the __pycache__ directory
By default a .pyc byte code file is used
Running python -O uses an “optimized” .pyo file

I Not much optimization actually happens
I Ignores assert statements

Benefits of pre-compilation
I Skip the compilation step when invoking the .py file
I If imported multiple times, it will only get compiled once

Compiling to byte code will not make your program faster

Robert Rand (University of Pennsylvania) CIS 192 December 03, 2015 10 / 21

Cython

Cython is a optimizing static compiler for Python
It is a superset of Python:

I It *should* run all pure Python code correctly
I Directly call C functions
I Add C type declarations to Python variables

Compiles through C instead of to byte code
I Results in native machine code: shared object .so

Have to jump through a few hoops to compile
I create a setup.py file that invokes cythonize
I create a stub .py file to import the original and call a function

Faster Python code basically for free

Robert Rand (University of Pennsylvania) CIS 192 December 03, 2015 11 / 21

Outline

1 Performance
Measurement
Compilation

2 Concurrency
Multi-Thread
Multi-Process
Worker Pools

Robert Rand (University of Pennsylvania) CIS 192 December 03, 2015 12 / 21

Threading

threading is the built-in threading library
Create a thread:

from threading import Thread
args = (a1, a2, ...)
kwargs = {k1:v1, k2:v2, ...}
t = Thread(target=fun, args=args, kwargs=kwargs)
t.start()

t.start():
I Creates a new thread in the current Python process
I That thread then calls fun(*args, **kwargs)

Robert Rand (University of Pennsylvania) CIS 192 December 03, 2015 13 / 21

Waiting on Threads

When a thread is created it can execute in parallel
Sometimes you need to be sure the Thread is done
t.join() → Waits until thread t finishes
If you create a bunch of threads to do a task

I The task isn’t finished until all of the threads finish
I You should not return a partial result to the caller
I .join() on all the workers before finishing

Robert Rand (University of Pennsylvania) CIS 192 December 03, 2015 14 / 21

GIL

CPython has a Global Interpreter Lock (GIL)
This means that only one thread can execute at a time
The exception is that threads release the GIL while doing I/O
The reason is to make the implementation of CPython simple

I Simple is better than complex
Take away:

I Multi-threaded Python code is not worth your time
I unless your doing a lot of I/O

Robert Rand (University of Pennsylvania) CIS 192 December 03, 2015 15 / 21

Multi-processing

multiprocessing is the built-in mulitprocessing library
Create a new process:

from multiprocessing import Process
as = (a1, a2, ...)
ks = {k1:v1, k2:v2, ...}
p = Process(target=fun, as=args, ks=kwargs)
p.start()

p.start():
I Creates a new Python process
I That process then calls fun(*args, **kwargs)

You should wait on processes with p.join()

Robert Rand (University of Pennsylvania) CIS 192 December 03, 2015 16 / 21

Differences from Threads

Threads (In Python)
I Threads share memory
I Changing a variable in one thread can effects other threads
I Threads are cheap to make
I Threads basically need only a stack and Instruction Pointer

Processes (In Python)
I Processes do not share the same memory
I Processes are expensive to create
I A new process might copy all of the data of its parent
I Each process gets its own GIL
I Multiple processes actually run computations in parallel

Robert Rand (University of Pennsylvania) CIS 192 December 03, 2015 17 / 21

Inter-Process Communication

Since Processes don’t share memory → need messages
from multiprocessing import Queue

result_queue = Queue()
p = Process(target=func,

args=(data, result_queue))
p.start()
ans = result_queue.get()
p.join()

If you try to join a process with a non-empty queue
I The process won’t terminate
I You may deadlock

Robert Rand (University of Pennsylvania) CIS 192 December 03, 2015 18 / 21

ProcessPoolExecutor

Use a pool of worker processes instead of 1 process per task
I Creating a process is expensive
I Want to reuse the processes we already have

concurrent.futures provides pools of workers
import concurrent.futures as cf

cf.ProcessPoolExecutor
I Creates workers using multiprocessing

cf.ThreadPoolExecutor
I Creates workers using threading

Map your workers to jobs

cpus = os.cpu_count()
with cf.ProcessPoolExecutor(cpus) as ex:

results = ex.map(function, [data1, ...])

Robert Rand (University of Pennsylvania) CIS 192 December 03, 2015 19 / 21

Concurrency is Complicated

These are the basics for clearly separable tasks
What to do if multiple threads want the same data?

I Obstacles: Race Conditions, Starvation, Deadlock
I Tools: Locks, Barriers, Semaphores, ...

What if you want to run on multiple machines?
I Distributed Computing

Robert Rand (University of Pennsylvania) CIS 192 December 03, 2015 20 / 21

Thank You

Robert Rand (University of Pennsylvania) CIS 192 December 03, 2015 21 / 21

	Performance
	Measurement
	Compilation

	Concurrency
	Multi-Thread
	Multi-Process
	Worker Pools

