CIS192 Python Programming

Graphical User Interfaces

Robert Rand

University of Pennsylvania

December 03, 2015

@

Robert Rand (University of Pennsylvania) CIS 192 December 03, 2015 1/21

Outline

0 Performance

e Concurrency

]

Robert Rand (University of Pennsylvania) CIS 192 December 03, 2015 2/21

Time and Clock

@ time.time
» Returns the amount of time (in seconds) since the Epoch.
» January 1, 1970 on UNIX and UNIX-based systems (eg. Linux,
0SX)
» January 1, 1601 on Windows
» Higher accuracy on UNIX machines
@ time.clock
Behaves differently on UNIX and Windows machines.
» Shows processor time on UNIX machines (ignores time sleeping)
» Shows time since first call on Windows.
» Higher accuracy on Windows machines.

v

@

Robert Rand (University of Pennsylvania) CIS 192 December 03, 2015 3/21

Timeit

@ The timeit module times execution of bits of code

@ Uses time.clock on Windows and time.time on everything
else.

@ It avoids some common traps for timing code

» Setup code is separated out and not timed
» Garbage collecting is turned off
» Repeated trials suppress measurement noise

@ Use timeit when you want to see which of 2 options is faster

@

Robert Rand (University of Pennsylvania) CIS 192 December 03, 2015 4/21

Using Timeit

import timeit

t = timeit.Timer (stmt=stmt_code, setup=setup_code)
t.timeit (number=num_trials)

@ setup is executed once before any stmts
@ stmt is executed num_trials times

@ Returns time in seconds taken to execute
@ The time does not include executing setup

@ Copying the code to execute into a multi-line string could be useful
@ A better idea is to import it:

» setup = 'from main import func_to_time’

@

Robert Rand (University of Pennsylvania) CIS 192 December 03, 2015 5/21

Command Line and iPython Timeit

@ Command Line

» Use python -m timeit ‘‘[command]’’

» Include setup code as first argument with —s

» Chooses an appropriate number of iterations for you.
» Good for small snippets of mostly native code.

@ iPython

» Allows you to type $timeit [function] inthe iPython REPL
» Has local scope: No need to import required functions.

@

Robert Rand (University of Pennsylvania) CIS 192 December 03, 2015 6/21

Profile

profile and cProfile are built-in profilers
Profiling a program gives data on a particular execution
Shows which functions the program spends time in

Profiling can identify bottleneck functions
Then you can target optimizations to those functions

Since there is overhead to track which functions are being called:

» Profiling can take longer than regular execution
» The output should not be used to benchmark (use timeit)

°
°
°
@ Useful if a program is running slower than you expect/want
°
°
°

@

Robert Rand (University of Pennsylvania) CIS 192 December 03, 2015 7/21

profile vs cProfile

@ profile and cProfile

» have the same interface
» cProfile is a faster C extension
@ To profile a function call: cProfile.run (' function()’)
@ Profile the whole program with
if _ name_ == '_ _main__ ':
cProfile.run('main()’)

@

Robert Rand (University of Pennsylvania) CIS 192 December 03, 2015 8/21

pstats to Format Output

@ Nice printing of output with pstats

4 r .

if name == main

cProfile.run (‘main()’, ’'restats’)
p = pstats.Stats(’'restats’)
p.sort_stats ('cumulative’) .print_stats ()

@ Save the output to afile " restats’
@ Parse that file with pstats
@ Sort by a column of the output

@

Robert Rand (University of Pennsylvania) CIS 192 December 03, 2015 9/21

Byte Code

@ The CPython interpreter:

» Generates byte code (.pyc)
» Executes that byte code

@ When a Python module is imported byte code is saved
@ Byte code is put in the __pycache___ directory
@ By default a . pyc byte code file is used

@ Running python -0 uses an “optimized” .pyo file

» Not much optimization actually happens
» Ignores assert statements

@ Benefits of pre-compilation

» Skip the compilation step when invoking the . py file
» If imported multiple times, it will only get compiled once

@ Compiling to byte code will not make your program faster
[

Robert Rand (University of Pennsylvania) CIS 192 December 03, 2015 10/21

Cython

Cython is a optimizing static compiler for Python
It is a superset of Python:

» It *should” run all pure Python code correctly
» Directly call C functions
» Add C type declarations to Python variables

Compiles through C instead of to byte code
» Results in native machine code: shared object . so
Have to jump through a few hoops to compile
» create a setup.py file that invokes cythonize
» create a stub . py file to import the original and call a function

Faster Python code basically for free

@

Robert Rand (University of Pennsylvania) CIS 192 December 03, 2015 11/21

Outline

0 Performance

e Concurrency

]

Robert Rand (University of Pennsylvania) CIS 192 December 03, 2015 12/21

Threading

@ threading is the built-in threading library
@ Create a thread:

from threading import Thread

args = (al, a2, ...)

kwargs = {kl:v1l, k2:v2, ...}

t = Thread(target=fun, args=args, kwargs=kwargs)
t.start ()

@ t.start ():
» Creates a new thread in the current Python process
» That thread then calls fun (xargs, xxkwargs)

@

Robert Rand (University of Pennsylvania) CIS 192 December 03, 2015 13/21

Waiting on Threads

@ When a thread is created it can execute in parallel
@ Sometimes you need to be sure the Thread is done

@ t.join () — Waits until thread t finishes
@ If you create a bunch of threads to do a task

» The task isn’t finished until all of the threads finish
» You should not return a partial result to the caller
» .join () on all the workers before finishing

@

Robert Rand (University of Pennsylvania) CIS 192 December 03, 2015 14/21

GIL

@ CPython has a Global Interpreter Lock (GIL)

@ This means that only one thread can execute at a time

@ The exception is that threads release the GIL while doing I/O

@ The reason is to make the implementation of CPython simple
» Simple is better than complex

@ Take away:

» Multi-threaded Python code is not worth your time
» unless your doing a lot of I/O

@

Robert Rand (University of Pennsylvania) CIS 192 December 03, 2015 15/21

Multi-processing

@ multiprocessing is the built-in mulitprocessing library
@ Create a new process:

from multiprocessing import Process

as = (al, az, ...)

ks = {kl:v1l, k2:v2, ...}

p = Process (target=fun, as=args, ks=kwargs)
p.start ()

@ p.start ():

» Creates a new Python process
» That process then calls fun (xargs, *xkwargs)

@ You should wait on processes with p. join ()

@

Robert Rand (University of Pennsylvania) CIS 192 December 03, 2015 16/21

Differences from Threads

@ Threads (In Python)
» Threads share memory
» Changing a variable in one thread can effects other threads
» Threads are cheap to make
» Threads basically need only a stack and Instruction Pointer

@ Processes (In Python)

Processes do not share the same memory

Processes are expensive to create

A new process might copy all of the data of its parent
Each process gets its own GIL

Multiple processes actually run computations in parallel

v

v vy VvYy

@

Robert Rand (University of Pennsylvania) CIS 192 December 03, 2015 17/21

Inter-Process Communication

@ Since Processes don’t share memory — need messages

@ from multiprocessing import Queue

result_qgqueue = Queue ()
p = Process (target=func,
args=(data, result_queue))

p.start ()
ans = result_gqgqueue.get ()

p.Jjoin()

@ Ifyou try to join a process with a non-empty queue

» The process won’t terminate
» You may deadlock

@

Robert Rand (University of Pennsylvania) CIS 192 December 03, 2015 18/21

ProcessPoolExecutor

@ Use a pool of worker processes instead of 1 process per task
» Creating a process is expensive
» Want to reuse the processes we already have

@ concurrent. futures provides pools of workers
@ import concurrent.futures as cf
@ cf.ProcessPoolExecutor
» Creates workers using multiprocessing
@ cf.ThreadPoolExecutor
» Creates workers using threading
@ Map your workers to jobs

cpus = oOs.cpu_count ()
with cf.ProcessPoolExecutor (cpus) as ex:
results = ex.map (function, [datal, ...1])

@

Robert Rand (University of Pennsylvania) CIS 192 December 03, 2015 19/21

Concurrency is Complicated

@ These are the basics for clearly separable tasks
@ What to do if multiple threads want the same data?

» Obstacles: Race Conditions, Starvation, Deadlock
» Tools: Locks, Barriers, Semaphores, ...

@ What if you want to run on multiple machines?
» Distributed Computing

@

Robert Rand (University of Pennsylvania) CIS 192 December 03, 2015 20/ 21

Thank You

4
le Python!!!

	Performance
	Measurement
	Compilation

	Concurrency
	Multi-Thread
	Multi-Process
	Worker Pools

